| Viewing file:  decode_asn1.py (31.59 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
# This file is dual licensed under the terms of the Apache License, Version# 2.0, and the BSD License. See the LICENSE file in the root of this repository
 # for complete details.
 
 from __future__ import absolute_import, division, print_function
 
 import datetime
 import ipaddress
 
 import six
 
 from cryptography import x509
 from cryptography.hazmat._der import DERReader, INTEGER, NULL, SEQUENCE
 from cryptography.x509.extensions import _TLS_FEATURE_TYPE_TO_ENUM
 from cryptography.x509.name import _ASN1_TYPE_TO_ENUM
 from cryptography.x509.oid import (
 CRLEntryExtensionOID,
 CertificatePoliciesOID,
 ExtensionOID,
 OCSPExtensionOID,
 )
 
 
 def _obj2txt(backend, obj):
 # Set to 80 on the recommendation of
 # https://www.openssl.org/docs/crypto/OBJ_nid2ln.html#return_values
 #
 # But OIDs longer than this occur in real life (e.g. Active
 # Directory makes some very long OIDs).  So we need to detect
 # and properly handle the case where the default buffer is not
 # big enough.
 #
 buf_len = 80
 buf = backend._ffi.new("char[]", buf_len)
 
 # 'res' is the number of bytes that *would* be written if the
 # buffer is large enough.  If 'res' > buf_len - 1, we need to
 # alloc a big-enough buffer and go again.
 res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
 if res > buf_len - 1:  # account for terminating null byte
 buf_len = res + 1
 buf = backend._ffi.new("char[]", buf_len)
 res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
 backend.openssl_assert(res > 0)
 return backend._ffi.buffer(buf, res)[:].decode()
 
 
 def _decode_x509_name_entry(backend, x509_name_entry):
 obj = backend._lib.X509_NAME_ENTRY_get_object(x509_name_entry)
 backend.openssl_assert(obj != backend._ffi.NULL)
 data = backend._lib.X509_NAME_ENTRY_get_data(x509_name_entry)
 backend.openssl_assert(data != backend._ffi.NULL)
 value = _asn1_string_to_utf8(backend, data)
 oid = _obj2txt(backend, obj)
 type = _ASN1_TYPE_TO_ENUM[data.type]
 
 return x509.NameAttribute(x509.ObjectIdentifier(oid), value, type)
 
 
 def _decode_x509_name(backend, x509_name):
 count = backend._lib.X509_NAME_entry_count(x509_name)
 attributes = []
 prev_set_id = -1
 for x in range(count):
 entry = backend._lib.X509_NAME_get_entry(x509_name, x)
 attribute = _decode_x509_name_entry(backend, entry)
 set_id = backend._lib.Cryptography_X509_NAME_ENTRY_set(entry)
 if set_id != prev_set_id:
 attributes.append({attribute})
 else:
 # is in the same RDN a previous entry
 attributes[-1].add(attribute)
 prev_set_id = set_id
 
 return x509.Name(x509.RelativeDistinguishedName(rdn) for rdn in attributes)
 
 
 def _decode_general_names(backend, gns):
 num = backend._lib.sk_GENERAL_NAME_num(gns)
 names = []
 for i in range(num):
 gn = backend._lib.sk_GENERAL_NAME_value(gns, i)
 backend.openssl_assert(gn != backend._ffi.NULL)
 names.append(_decode_general_name(backend, gn))
 
 return names
 
 
 def _decode_general_name(backend, gn):
 if gn.type == backend._lib.GEN_DNS:
 # Convert to bytes and then decode to utf8. We don't use
 # asn1_string_to_utf8 here because it doesn't properly convert
 # utf8 from ia5strings.
 data = _asn1_string_to_bytes(backend, gn.d.dNSName).decode("utf8")
 # We don't use the constructor for DNSName so we can bypass validation
 # This allows us to create DNSName objects that have unicode chars
 # when a certificate (against the RFC) contains them.
 return x509.DNSName._init_without_validation(data)
 elif gn.type == backend._lib.GEN_URI:
 # Convert to bytes and then decode to utf8. We don't use
 # asn1_string_to_utf8 here because it doesn't properly convert
 # utf8 from ia5strings.
 data = _asn1_string_to_bytes(
 backend, gn.d.uniformResourceIdentifier
 ).decode("utf8")
 # We don't use the constructor for URI so we can bypass validation
 # This allows us to create URI objects that have unicode chars
 # when a certificate (against the RFC) contains them.
 return x509.UniformResourceIdentifier._init_without_validation(data)
 elif gn.type == backend._lib.GEN_RID:
 oid = _obj2txt(backend, gn.d.registeredID)
 return x509.RegisteredID(x509.ObjectIdentifier(oid))
 elif gn.type == backend._lib.GEN_IPADD:
 data = _asn1_string_to_bytes(backend, gn.d.iPAddress)
 data_len = len(data)
 if data_len == 8 or data_len == 32:
 # This is an IPv4 or IPv6 Network and not a single IP. This
 # type of data appears in Name Constraints. Unfortunately,
 # ipaddress doesn't support packed bytes + netmask. Additionally,
 # IPv6Network can only handle CIDR rather than the full 16 byte
 # netmask. To handle this we convert the netmask to integer, then
 # find the first 0 bit, which will be the prefix. If another 1
 # bit is present after that the netmask is invalid.
 base = ipaddress.ip_address(data[: data_len // 2])
 netmask = ipaddress.ip_address(data[data_len // 2 :])
 bits = bin(int(netmask))[2:]
 prefix = bits.find("0")
 # If no 0 bits are found it is a /32 or /128
 if prefix == -1:
 prefix = len(bits)
 
 if "1" in bits[prefix:]:
 raise ValueError("Invalid netmask")
 
 ip = ipaddress.ip_network(base.exploded + u"/{}".format(prefix))
 else:
 ip = ipaddress.ip_address(data)
 
 return x509.IPAddress(ip)
 elif gn.type == backend._lib.GEN_DIRNAME:
 return x509.DirectoryName(
 _decode_x509_name(backend, gn.d.directoryName)
 )
 elif gn.type == backend._lib.GEN_EMAIL:
 # Convert to bytes and then decode to utf8. We don't use
 # asn1_string_to_utf8 here because it doesn't properly convert
 # utf8 from ia5strings.
 data = _asn1_string_to_bytes(backend, gn.d.rfc822Name).decode("utf8")
 # We don't use the constructor for RFC822Name so we can bypass
 # validation. This allows us to create RFC822Name objects that have
 # unicode chars when a certificate (against the RFC) contains them.
 return x509.RFC822Name._init_without_validation(data)
 elif gn.type == backend._lib.GEN_OTHERNAME:
 type_id = _obj2txt(backend, gn.d.otherName.type_id)
 value = _asn1_to_der(backend, gn.d.otherName.value)
 return x509.OtherName(x509.ObjectIdentifier(type_id), value)
 else:
 # x400Address or ediPartyName
 raise x509.UnsupportedGeneralNameType(
 "{} is not a supported type".format(
 x509._GENERAL_NAMES.get(gn.type, gn.type)
 ),
 gn.type,
 )
 
 
 def _decode_ocsp_no_check(backend, ext):
 return x509.OCSPNoCheck()
 
 
 def _decode_crl_number(backend, ext):
 asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
 asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
 return x509.CRLNumber(_asn1_integer_to_int(backend, asn1_int))
 
 
 def _decode_delta_crl_indicator(backend, ext):
 asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
 asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
 return x509.DeltaCRLIndicator(_asn1_integer_to_int(backend, asn1_int))
 
 
 class _X509ExtensionParser(object):
 def __init__(self, backend, ext_count, get_ext, handlers):
 self.ext_count = ext_count
 self.get_ext = get_ext
 self.handlers = handlers
 self._backend = backend
 
 def parse(self, x509_obj):
 extensions = []
 seen_oids = set()
 for i in range(self.ext_count(x509_obj)):
 ext = self.get_ext(x509_obj, i)
 self._backend.openssl_assert(ext != self._backend._ffi.NULL)
 crit = self._backend._lib.X509_EXTENSION_get_critical(ext)
 critical = crit == 1
 oid = x509.ObjectIdentifier(
 _obj2txt(
 self._backend,
 self._backend._lib.X509_EXTENSION_get_object(ext),
 )
 )
 if oid in seen_oids:
 raise x509.DuplicateExtension(
 "Duplicate {} extension found".format(oid), oid
 )
 
 # These OIDs are only supported in OpenSSL 1.1.0+ but we want
 # to support them in all versions of OpenSSL so we decode them
 # ourselves.
 if oid == ExtensionOID.TLS_FEATURE:
 # The extension contents are a SEQUENCE OF INTEGERs.
 data = self._backend._lib.X509_EXTENSION_get_data(ext)
 data_bytes = _asn1_string_to_bytes(self._backend, data)
 features = DERReader(data_bytes).read_single_element(SEQUENCE)
 parsed = []
 while not features.is_empty():
 parsed.append(features.read_element(INTEGER).as_integer())
 # Map the features to their enum value.
 value = x509.TLSFeature(
 [_TLS_FEATURE_TYPE_TO_ENUM[x] for x in parsed]
 )
 extensions.append(x509.Extension(oid, critical, value))
 seen_oids.add(oid)
 continue
 elif oid == ExtensionOID.PRECERT_POISON:
 data = self._backend._lib.X509_EXTENSION_get_data(ext)
 # The contents of the extension must be an ASN.1 NULL.
 reader = DERReader(_asn1_string_to_bytes(self._backend, data))
 reader.read_single_element(NULL).check_empty()
 extensions.append(
 x509.Extension(oid, critical, x509.PrecertPoison())
 )
 seen_oids.add(oid)
 continue
 
 try:
 handler = self.handlers[oid]
 except KeyError:
 # Dump the DER payload into an UnrecognizedExtension object
 data = self._backend._lib.X509_EXTENSION_get_data(ext)
 self._backend.openssl_assert(data != self._backend._ffi.NULL)
 der = self._backend._ffi.buffer(data.data, data.length)[:]
 unrecognized = x509.UnrecognizedExtension(oid, der)
 extensions.append(x509.Extension(oid, critical, unrecognized))
 else:
 ext_data = self._backend._lib.X509V3_EXT_d2i(ext)
 if ext_data == self._backend._ffi.NULL:
 self._backend._consume_errors()
 raise ValueError(
 "The {} extension is invalid and can't be "
 "parsed".format(oid)
 )
 
 value = handler(self._backend, ext_data)
 extensions.append(x509.Extension(oid, critical, value))
 
 seen_oids.add(oid)
 
 return x509.Extensions(extensions)
 
 
 def _decode_certificate_policies(backend, cp):
 cp = backend._ffi.cast("Cryptography_STACK_OF_POLICYINFO *", cp)
 cp = backend._ffi.gc(cp, backend._lib.CERTIFICATEPOLICIES_free)
 
 num = backend._lib.sk_POLICYINFO_num(cp)
 certificate_policies = []
 for i in range(num):
 qualifiers = None
 pi = backend._lib.sk_POLICYINFO_value(cp, i)
 oid = x509.ObjectIdentifier(_obj2txt(backend, pi.policyid))
 if pi.qualifiers != backend._ffi.NULL:
 qnum = backend._lib.sk_POLICYQUALINFO_num(pi.qualifiers)
 qualifiers = []
 for j in range(qnum):
 pqi = backend._lib.sk_POLICYQUALINFO_value(pi.qualifiers, j)
 pqualid = x509.ObjectIdentifier(_obj2txt(backend, pqi.pqualid))
 if pqualid == CertificatePoliciesOID.CPS_QUALIFIER:
 cpsuri = backend._ffi.buffer(
 pqi.d.cpsuri.data, pqi.d.cpsuri.length
 )[:].decode("ascii")
 qualifiers.append(cpsuri)
 else:
 assert pqualid == CertificatePoliciesOID.CPS_USER_NOTICE
 user_notice = _decode_user_notice(
 backend, pqi.d.usernotice
 )
 qualifiers.append(user_notice)
 
 certificate_policies.append(x509.PolicyInformation(oid, qualifiers))
 
 return x509.CertificatePolicies(certificate_policies)
 
 
 def _decode_user_notice(backend, un):
 explicit_text = None
 notice_reference = None
 
 if un.exptext != backend._ffi.NULL:
 explicit_text = _asn1_string_to_utf8(backend, un.exptext)
 
 if un.noticeref != backend._ffi.NULL:
 organization = _asn1_string_to_utf8(backend, un.noticeref.organization)
 
 num = backend._lib.sk_ASN1_INTEGER_num(un.noticeref.noticenos)
 notice_numbers = []
 for i in range(num):
 asn1_int = backend._lib.sk_ASN1_INTEGER_value(
 un.noticeref.noticenos, i
 )
 notice_num = _asn1_integer_to_int(backend, asn1_int)
 notice_numbers.append(notice_num)
 
 notice_reference = x509.NoticeReference(organization, notice_numbers)
 
 return x509.UserNotice(notice_reference, explicit_text)
 
 
 def _decode_basic_constraints(backend, bc_st):
 basic_constraints = backend._ffi.cast("BASIC_CONSTRAINTS *", bc_st)
 basic_constraints = backend._ffi.gc(
 basic_constraints, backend._lib.BASIC_CONSTRAINTS_free
 )
 # The byte representation of an ASN.1 boolean true is \xff. OpenSSL
 # chooses to just map this to its ordinal value, so true is 255 and
 # false is 0.
 ca = basic_constraints.ca == 255
 path_length = _asn1_integer_to_int_or_none(
 backend, basic_constraints.pathlen
 )
 
 return x509.BasicConstraints(ca, path_length)
 
 
 def _decode_subject_key_identifier(backend, asn1_string):
 asn1_string = backend._ffi.cast("ASN1_OCTET_STRING *", asn1_string)
 asn1_string = backend._ffi.gc(
 asn1_string, backend._lib.ASN1_OCTET_STRING_free
 )
 return x509.SubjectKeyIdentifier(
 backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
 )
 
 
 def _decode_authority_key_identifier(backend, akid):
 akid = backend._ffi.cast("AUTHORITY_KEYID *", akid)
 akid = backend._ffi.gc(akid, backend._lib.AUTHORITY_KEYID_free)
 key_identifier = None
 authority_cert_issuer = None
 
 if akid.keyid != backend._ffi.NULL:
 key_identifier = backend._ffi.buffer(
 akid.keyid.data, akid.keyid.length
 )[:]
 
 if akid.issuer != backend._ffi.NULL:
 authority_cert_issuer = _decode_general_names(backend, akid.issuer)
 
 authority_cert_serial_number = _asn1_integer_to_int_or_none(
 backend, akid.serial
 )
 
 return x509.AuthorityKeyIdentifier(
 key_identifier, authority_cert_issuer, authority_cert_serial_number
 )
 
 
 def _decode_information_access(backend, ia):
 ia = backend._ffi.cast("Cryptography_STACK_OF_ACCESS_DESCRIPTION *", ia)
 ia = backend._ffi.gc(
 ia,
 lambda x: backend._lib.sk_ACCESS_DESCRIPTION_pop_free(
 x,
 backend._ffi.addressof(
 backend._lib._original_lib, "ACCESS_DESCRIPTION_free"
 ),
 ),
 )
 num = backend._lib.sk_ACCESS_DESCRIPTION_num(ia)
 access_descriptions = []
 for i in range(num):
 ad = backend._lib.sk_ACCESS_DESCRIPTION_value(ia, i)
 backend.openssl_assert(ad.method != backend._ffi.NULL)
 oid = x509.ObjectIdentifier(_obj2txt(backend, ad.method))
 backend.openssl_assert(ad.location != backend._ffi.NULL)
 gn = _decode_general_name(backend, ad.location)
 access_descriptions.append(x509.AccessDescription(oid, gn))
 
 return access_descriptions
 
 
 def _decode_authority_information_access(backend, aia):
 access_descriptions = _decode_information_access(backend, aia)
 return x509.AuthorityInformationAccess(access_descriptions)
 
 
 def _decode_subject_information_access(backend, aia):
 access_descriptions = _decode_information_access(backend, aia)
 return x509.SubjectInformationAccess(access_descriptions)
 
 
 def _decode_key_usage(backend, bit_string):
 bit_string = backend._ffi.cast("ASN1_BIT_STRING *", bit_string)
 bit_string = backend._ffi.gc(bit_string, backend._lib.ASN1_BIT_STRING_free)
 get_bit = backend._lib.ASN1_BIT_STRING_get_bit
 digital_signature = get_bit(bit_string, 0) == 1
 content_commitment = get_bit(bit_string, 1) == 1
 key_encipherment = get_bit(bit_string, 2) == 1
 data_encipherment = get_bit(bit_string, 3) == 1
 key_agreement = get_bit(bit_string, 4) == 1
 key_cert_sign = get_bit(bit_string, 5) == 1
 crl_sign = get_bit(bit_string, 6) == 1
 encipher_only = get_bit(bit_string, 7) == 1
 decipher_only = get_bit(bit_string, 8) == 1
 return x509.KeyUsage(
 digital_signature,
 content_commitment,
 key_encipherment,
 data_encipherment,
 key_agreement,
 key_cert_sign,
 crl_sign,
 encipher_only,
 decipher_only,
 )
 
 
 def _decode_general_names_extension(backend, gns):
 gns = backend._ffi.cast("GENERAL_NAMES *", gns)
 gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
 general_names = _decode_general_names(backend, gns)
 return general_names
 
 
 def _decode_subject_alt_name(backend, ext):
 return x509.SubjectAlternativeName(
 _decode_general_names_extension(backend, ext)
 )
 
 
 def _decode_issuer_alt_name(backend, ext):
 return x509.IssuerAlternativeName(
 _decode_general_names_extension(backend, ext)
 )
 
 
 def _decode_name_constraints(backend, nc):
 nc = backend._ffi.cast("NAME_CONSTRAINTS *", nc)
 nc = backend._ffi.gc(nc, backend._lib.NAME_CONSTRAINTS_free)
 permitted = _decode_general_subtrees(backend, nc.permittedSubtrees)
 excluded = _decode_general_subtrees(backend, nc.excludedSubtrees)
 return x509.NameConstraints(
 permitted_subtrees=permitted, excluded_subtrees=excluded
 )
 
 
 def _decode_general_subtrees(backend, stack_subtrees):
 if stack_subtrees == backend._ffi.NULL:
 return None
 
 num = backend._lib.sk_GENERAL_SUBTREE_num(stack_subtrees)
 subtrees = []
 
 for i in range(num):
 obj = backend._lib.sk_GENERAL_SUBTREE_value(stack_subtrees, i)
 backend.openssl_assert(obj != backend._ffi.NULL)
 name = _decode_general_name(backend, obj.base)
 subtrees.append(name)
 
 return subtrees
 
 
 def _decode_issuing_dist_point(backend, idp):
 idp = backend._ffi.cast("ISSUING_DIST_POINT *", idp)
 idp = backend._ffi.gc(idp, backend._lib.ISSUING_DIST_POINT_free)
 if idp.distpoint != backend._ffi.NULL:
 full_name, relative_name = _decode_distpoint(backend, idp.distpoint)
 else:
 full_name = None
 relative_name = None
 
 only_user = idp.onlyuser == 255
 only_ca = idp.onlyCA == 255
 indirect_crl = idp.indirectCRL == 255
 only_attr = idp.onlyattr == 255
 if idp.onlysomereasons != backend._ffi.NULL:
 only_some_reasons = _decode_reasons(backend, idp.onlysomereasons)
 else:
 only_some_reasons = None
 
 return x509.IssuingDistributionPoint(
 full_name,
 relative_name,
 only_user,
 only_ca,
 only_some_reasons,
 indirect_crl,
 only_attr,
 )
 
 
 def _decode_policy_constraints(backend, pc):
 pc = backend._ffi.cast("POLICY_CONSTRAINTS *", pc)
 pc = backend._ffi.gc(pc, backend._lib.POLICY_CONSTRAINTS_free)
 
 require_explicit_policy = _asn1_integer_to_int_or_none(
 backend, pc.requireExplicitPolicy
 )
 inhibit_policy_mapping = _asn1_integer_to_int_or_none(
 backend, pc.inhibitPolicyMapping
 )
 
 return x509.PolicyConstraints(
 require_explicit_policy, inhibit_policy_mapping
 )
 
 
 def _decode_extended_key_usage(backend, sk):
 sk = backend._ffi.cast("Cryptography_STACK_OF_ASN1_OBJECT *", sk)
 sk = backend._ffi.gc(sk, backend._lib.sk_ASN1_OBJECT_free)
 num = backend._lib.sk_ASN1_OBJECT_num(sk)
 ekus = []
 
 for i in range(num):
 obj = backend._lib.sk_ASN1_OBJECT_value(sk, i)
 backend.openssl_assert(obj != backend._ffi.NULL)
 oid = x509.ObjectIdentifier(_obj2txt(backend, obj))
 ekus.append(oid)
 
 return x509.ExtendedKeyUsage(ekus)
 
 
 _DISTPOINT_TYPE_FULLNAME = 0
 _DISTPOINT_TYPE_RELATIVENAME = 1
 
 
 def _decode_dist_points(backend, cdps):
 cdps = backend._ffi.cast("Cryptography_STACK_OF_DIST_POINT *", cdps)
 cdps = backend._ffi.gc(cdps, backend._lib.CRL_DIST_POINTS_free)
 
 num = backend._lib.sk_DIST_POINT_num(cdps)
 dist_points = []
 for i in range(num):
 full_name = None
 relative_name = None
 crl_issuer = None
 reasons = None
 cdp = backend._lib.sk_DIST_POINT_value(cdps, i)
 if cdp.reasons != backend._ffi.NULL:
 reasons = _decode_reasons(backend, cdp.reasons)
 
 if cdp.CRLissuer != backend._ffi.NULL:
 crl_issuer = _decode_general_names(backend, cdp.CRLissuer)
 
 # Certificates may have a crl_issuer/reasons and no distribution
 # point so make sure it's not null.
 if cdp.distpoint != backend._ffi.NULL:
 full_name, relative_name = _decode_distpoint(
 backend, cdp.distpoint
 )
 
 dist_points.append(
 x509.DistributionPoint(
 full_name, relative_name, reasons, crl_issuer
 )
 )
 
 return dist_points
 
 
 # ReasonFlags ::= BIT STRING {
 #      unused                  (0),
 #      keyCompromise           (1),
 #      cACompromise            (2),
 #      affiliationChanged      (3),
 #      superseded              (4),
 #      cessationOfOperation    (5),
 #      certificateHold         (6),
 #      privilegeWithdrawn      (7),
 #      aACompromise            (8) }
 _REASON_BIT_MAPPING = {
 1: x509.ReasonFlags.key_compromise,
 2: x509.ReasonFlags.ca_compromise,
 3: x509.ReasonFlags.affiliation_changed,
 4: x509.ReasonFlags.superseded,
 5: x509.ReasonFlags.cessation_of_operation,
 6: x509.ReasonFlags.certificate_hold,
 7: x509.ReasonFlags.privilege_withdrawn,
 8: x509.ReasonFlags.aa_compromise,
 }
 
 
 def _decode_reasons(backend, reasons):
 # We will check each bit from RFC 5280
 enum_reasons = []
 for bit_position, reason in six.iteritems(_REASON_BIT_MAPPING):
 if backend._lib.ASN1_BIT_STRING_get_bit(reasons, bit_position):
 enum_reasons.append(reason)
 
 return frozenset(enum_reasons)
 
 
 def _decode_distpoint(backend, distpoint):
 if distpoint.type == _DISTPOINT_TYPE_FULLNAME:
 full_name = _decode_general_names(backend, distpoint.name.fullname)
 return full_name, None
 
 # OpenSSL code doesn't test for a specific type for
 # relativename, everything that isn't fullname is considered
 # relativename.  Per RFC 5280:
 #
 # DistributionPointName ::= CHOICE {
 #      fullName                [0]      GeneralNames,
 #      nameRelativeToCRLIssuer [1]      RelativeDistinguishedName }
 rns = distpoint.name.relativename
 rnum = backend._lib.sk_X509_NAME_ENTRY_num(rns)
 attributes = set()
 for i in range(rnum):
 rn = backend._lib.sk_X509_NAME_ENTRY_value(rns, i)
 backend.openssl_assert(rn != backend._ffi.NULL)
 attributes.add(_decode_x509_name_entry(backend, rn))
 
 relative_name = x509.RelativeDistinguishedName(attributes)
 
 return None, relative_name
 
 
 def _decode_crl_distribution_points(backend, cdps):
 dist_points = _decode_dist_points(backend, cdps)
 return x509.CRLDistributionPoints(dist_points)
 
 
 def _decode_freshest_crl(backend, cdps):
 dist_points = _decode_dist_points(backend, cdps)
 return x509.FreshestCRL(dist_points)
 
 
 def _decode_inhibit_any_policy(backend, asn1_int):
 asn1_int = backend._ffi.cast("ASN1_INTEGER *", asn1_int)
 asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
 skip_certs = _asn1_integer_to_int(backend, asn1_int)
 return x509.InhibitAnyPolicy(skip_certs)
 
 
 def _decode_scts(backend, asn1_scts):
 from cryptography.hazmat.backends.openssl.x509 import (
 _SignedCertificateTimestamp,
 )
 
 asn1_scts = backend._ffi.cast("Cryptography_STACK_OF_SCT *", asn1_scts)
 asn1_scts = backend._ffi.gc(asn1_scts, backend._lib.SCT_LIST_free)
 
 scts = []
 for i in range(backend._lib.sk_SCT_num(asn1_scts)):
 sct = backend._lib.sk_SCT_value(asn1_scts, i)
 
 scts.append(_SignedCertificateTimestamp(backend, asn1_scts, sct))
 return scts
 
 
 def _decode_precert_signed_certificate_timestamps(backend, asn1_scts):
 return x509.PrecertificateSignedCertificateTimestamps(
 _decode_scts(backend, asn1_scts)
 )
 
 
 def _decode_signed_certificate_timestamps(backend, asn1_scts):
 return x509.SignedCertificateTimestamps(_decode_scts(backend, asn1_scts))
 
 
 #    CRLReason ::= ENUMERATED {
 #        unspecified             (0),
 #        keyCompromise           (1),
 #        cACompromise            (2),
 #        affiliationChanged      (3),
 #        superseded              (4),
 #        cessationOfOperation    (5),
 #        certificateHold         (6),
 #             -- value 7 is not used
 #        removeFromCRL           (8),
 #        privilegeWithdrawn      (9),
 #        aACompromise           (10) }
 _CRL_ENTRY_REASON_CODE_TO_ENUM = {
 0: x509.ReasonFlags.unspecified,
 1: x509.ReasonFlags.key_compromise,
 2: x509.ReasonFlags.ca_compromise,
 3: x509.ReasonFlags.affiliation_changed,
 4: x509.ReasonFlags.superseded,
 5: x509.ReasonFlags.cessation_of_operation,
 6: x509.ReasonFlags.certificate_hold,
 8: x509.ReasonFlags.remove_from_crl,
 9: x509.ReasonFlags.privilege_withdrawn,
 10: x509.ReasonFlags.aa_compromise,
 }
 
 
 _CRL_ENTRY_REASON_ENUM_TO_CODE = {
 x509.ReasonFlags.unspecified: 0,
 x509.ReasonFlags.key_compromise: 1,
 x509.ReasonFlags.ca_compromise: 2,
 x509.ReasonFlags.affiliation_changed: 3,
 x509.ReasonFlags.superseded: 4,
 x509.ReasonFlags.cessation_of_operation: 5,
 x509.ReasonFlags.certificate_hold: 6,
 x509.ReasonFlags.remove_from_crl: 8,
 x509.ReasonFlags.privilege_withdrawn: 9,
 x509.ReasonFlags.aa_compromise: 10,
 }
 
 
 def _decode_crl_reason(backend, enum):
 enum = backend._ffi.cast("ASN1_ENUMERATED *", enum)
 enum = backend._ffi.gc(enum, backend._lib.ASN1_ENUMERATED_free)
 code = backend._lib.ASN1_ENUMERATED_get(enum)
 
 try:
 return x509.CRLReason(_CRL_ENTRY_REASON_CODE_TO_ENUM[code])
 except KeyError:
 raise ValueError("Unsupported reason code: {}".format(code))
 
 
 def _decode_invalidity_date(backend, inv_date):
 generalized_time = backend._ffi.cast("ASN1_GENERALIZEDTIME *", inv_date)
 generalized_time = backend._ffi.gc(
 generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
 )
 return x509.InvalidityDate(
 _parse_asn1_generalized_time(backend, generalized_time)
 )
 
 
 def _decode_cert_issuer(backend, gns):
 gns = backend._ffi.cast("GENERAL_NAMES *", gns)
 gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
 general_names = _decode_general_names(backend, gns)
 return x509.CertificateIssuer(general_names)
 
 
 def _asn1_to_der(backend, asn1_type):
 buf = backend._ffi.new("unsigned char **")
 res = backend._lib.i2d_ASN1_TYPE(asn1_type, buf)
 backend.openssl_assert(res >= 0)
 backend.openssl_assert(buf[0] != backend._ffi.NULL)
 buf = backend._ffi.gc(
 buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
 )
 return backend._ffi.buffer(buf[0], res)[:]
 
 
 def _asn1_integer_to_int(backend, asn1_int):
 bn = backend._lib.ASN1_INTEGER_to_BN(asn1_int, backend._ffi.NULL)
 backend.openssl_assert(bn != backend._ffi.NULL)
 bn = backend._ffi.gc(bn, backend._lib.BN_free)
 return backend._bn_to_int(bn)
 
 
 def _asn1_integer_to_int_or_none(backend, asn1_int):
 if asn1_int == backend._ffi.NULL:
 return None
 else:
 return _asn1_integer_to_int(backend, asn1_int)
 
 
 def _asn1_string_to_bytes(backend, asn1_string):
 return backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
 
 
 def _asn1_string_to_ascii(backend, asn1_string):
 return _asn1_string_to_bytes(backend, asn1_string).decode("ascii")
 
 
 def _asn1_string_to_utf8(backend, asn1_string):
 buf = backend._ffi.new("unsigned char **")
 res = backend._lib.ASN1_STRING_to_UTF8(buf, asn1_string)
 if res == -1:
 raise ValueError(
 "Unsupported ASN1 string type. Type: {}".format(asn1_string.type)
 )
 
 backend.openssl_assert(buf[0] != backend._ffi.NULL)
 buf = backend._ffi.gc(
 buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
 )
 return backend._ffi.buffer(buf[0], res)[:].decode("utf8")
 
 
 def _parse_asn1_time(backend, asn1_time):
 backend.openssl_assert(asn1_time != backend._ffi.NULL)
 generalized_time = backend._lib.ASN1_TIME_to_generalizedtime(
 asn1_time, backend._ffi.NULL
 )
 if generalized_time == backend._ffi.NULL:
 raise ValueError(
 "Couldn't parse ASN.1 time as generalizedtime {!r}".format(
 _asn1_string_to_bytes(backend, asn1_time)
 )
 )
 
 generalized_time = backend._ffi.gc(
 generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
 )
 return _parse_asn1_generalized_time(backend, generalized_time)
 
 
 def _parse_asn1_generalized_time(backend, generalized_time):
 time = _asn1_string_to_ascii(
 backend, backend._ffi.cast("ASN1_STRING *", generalized_time)
 )
 return datetime.datetime.strptime(time, "%Y%m%d%H%M%SZ")
 
 
 def _decode_nonce(backend, nonce):
 nonce = backend._ffi.cast("ASN1_OCTET_STRING *", nonce)
 nonce = backend._ffi.gc(nonce, backend._lib.ASN1_OCTET_STRING_free)
 return x509.OCSPNonce(_asn1_string_to_bytes(backend, nonce))
 
 
 _EXTENSION_HANDLERS_BASE = {
 ExtensionOID.BASIC_CONSTRAINTS: _decode_basic_constraints,
 ExtensionOID.SUBJECT_KEY_IDENTIFIER: _decode_subject_key_identifier,
 ExtensionOID.KEY_USAGE: _decode_key_usage,
 ExtensionOID.SUBJECT_ALTERNATIVE_NAME: _decode_subject_alt_name,
 ExtensionOID.EXTENDED_KEY_USAGE: _decode_extended_key_usage,
 ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
 ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
 _decode_authority_information_access
 ),
 ExtensionOID.SUBJECT_INFORMATION_ACCESS: (
 _decode_subject_information_access
 ),
 ExtensionOID.CERTIFICATE_POLICIES: _decode_certificate_policies,
 ExtensionOID.CRL_DISTRIBUTION_POINTS: _decode_crl_distribution_points,
 ExtensionOID.FRESHEST_CRL: _decode_freshest_crl,
 ExtensionOID.OCSP_NO_CHECK: _decode_ocsp_no_check,
 ExtensionOID.INHIBIT_ANY_POLICY: _decode_inhibit_any_policy,
 ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
 ExtensionOID.NAME_CONSTRAINTS: _decode_name_constraints,
 ExtensionOID.POLICY_CONSTRAINTS: _decode_policy_constraints,
 }
 _EXTENSION_HANDLERS_SCT = {
 ExtensionOID.PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS: (
 _decode_precert_signed_certificate_timestamps
 )
 }
 
 _REVOKED_EXTENSION_HANDLERS = {
 CRLEntryExtensionOID.CRL_REASON: _decode_crl_reason,
 CRLEntryExtensionOID.INVALIDITY_DATE: _decode_invalidity_date,
 CRLEntryExtensionOID.CERTIFICATE_ISSUER: _decode_cert_issuer,
 }
 
 _CRL_EXTENSION_HANDLERS = {
 ExtensionOID.CRL_NUMBER: _decode_crl_number,
 ExtensionOID.DELTA_CRL_INDICATOR: _decode_delta_crl_indicator,
 ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
 ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
 ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
 _decode_authority_information_access
 ),
 ExtensionOID.ISSUING_DISTRIBUTION_POINT: _decode_issuing_dist_point,
 ExtensionOID.FRESHEST_CRL: _decode_freshest_crl,
 }
 
 _OCSP_REQ_EXTENSION_HANDLERS = {
 OCSPExtensionOID.NONCE: _decode_nonce,
 }
 
 _OCSP_BASICRESP_EXTENSION_HANDLERS = {
 OCSPExtensionOID.NONCE: _decode_nonce,
 }
 
 _OCSP_SINGLERESP_EXTENSION_HANDLERS_SCT = {
 ExtensionOID.SIGNED_CERTIFICATE_TIMESTAMPS: (
 _decode_signed_certificate_timestamps
 )
 }
 
 |