| Viewing file:  test_smoke.py (27.52 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
import picklefrom functools import partial
 
 import numpy as np
 import pytest
 from numpy.testing import assert_equal, assert_, assert_array_equal
 from numpy.random import (Generator, MT19937, PCG64, PCG64DXSM, Philox, SFC64)
 
 @pytest.fixture(scope='module',
 params=(np.bool_, np.int8, np.int16, np.int32, np.int64,
 np.uint8, np.uint16, np.uint32, np.uint64))
 def dtype(request):
 return request.param
 
 
 def params_0(f):
 val = f()
 assert_(np.isscalar(val))
 val = f(10)
 assert_(val.shape == (10,))
 val = f((10, 10))
 assert_(val.shape == (10, 10))
 val = f((10, 10, 10))
 assert_(val.shape == (10, 10, 10))
 val = f(size=(5, 5))
 assert_(val.shape == (5, 5))
 
 
 def params_1(f, bounded=False):
 a = 5.0
 b = np.arange(2.0, 12.0)
 c = np.arange(2.0, 102.0).reshape((10, 10))
 d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
 e = np.array([2.0, 3.0])
 g = np.arange(2.0, 12.0).reshape((1, 10, 1))
 if bounded:
 a = 0.5
 b = b / (1.5 * b.max())
 c = c / (1.5 * c.max())
 d = d / (1.5 * d.max())
 e = e / (1.5 * e.max())
 g = g / (1.5 * g.max())
 
 # Scalar
 f(a)
 # Scalar - size
 f(a, size=(10, 10))
 # 1d
 f(b)
 # 2d
 f(c)
 # 3d
 f(d)
 # 1d size
 f(b, size=10)
 # 2d - size - broadcast
 f(e, size=(10, 2))
 # 3d - size
 f(g, size=(10, 10, 10))
 
 
 def comp_state(state1, state2):
 identical = True
 if isinstance(state1, dict):
 for key in state1:
 identical &= comp_state(state1[key], state2[key])
 elif type(state1) != type(state2):
 identical &= type(state1) == type(state2)
 else:
 if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
 state2, (list, tuple, np.ndarray))):
 for s1, s2 in zip(state1, state2):
 identical &= comp_state(s1, s2)
 else:
 identical &= state1 == state2
 return identical
 
 
 def warmup(rg, n=None):
 if n is None:
 n = 11 + np.random.randint(0, 20)
 rg.standard_normal(n)
 rg.standard_normal(n)
 rg.standard_normal(n, dtype=np.float32)
 rg.standard_normal(n, dtype=np.float32)
 rg.integers(0, 2 ** 24, n, dtype=np.uint64)
 rg.integers(0, 2 ** 48, n, dtype=np.uint64)
 rg.standard_gamma(11.0, n)
 rg.standard_gamma(11.0, n, dtype=np.float32)
 rg.random(n, dtype=np.float64)
 rg.random(n, dtype=np.float32)
 
 
 class RNG:
 @classmethod
 def setup_class(cls):
 # Overridden in test classes. Place holder to silence IDE noise
 cls.bit_generator = PCG64
 cls.advance = None
 cls.seed = [12345]
 cls.rg = Generator(cls.bit_generator(*cls.seed))
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 64
 cls._extra_setup()
 
 @classmethod
 def _extra_setup(cls):
 cls.vec_1d = np.arange(2.0, 102.0)
 cls.vec_2d = np.arange(2.0, 102.0)[None, :]
 cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
 cls.seed_error = TypeError
 
 def _reset_state(self):
 self.rg.bit_generator.state = self.initial_state
 
 def test_init(self):
 rg = Generator(self.bit_generator())
 state = rg.bit_generator.state
 rg.standard_normal(1)
 rg.standard_normal(1)
 rg.bit_generator.state = state
 new_state = rg.bit_generator.state
 assert_(comp_state(state, new_state))
 
 def test_advance(self):
 state = self.rg.bit_generator.state
 if hasattr(self.rg.bit_generator, 'advance'):
 self.rg.bit_generator.advance(self.advance)
 assert_(not comp_state(state, self.rg.bit_generator.state))
 else:
 bitgen_name = self.rg.bit_generator.__class__.__name__
 pytest.skip(f'Advance is not supported by {bitgen_name}')
 
 def test_jump(self):
 state = self.rg.bit_generator.state
 if hasattr(self.rg.bit_generator, 'jumped'):
 bit_gen2 = self.rg.bit_generator.jumped()
 jumped_state = bit_gen2.state
 assert_(not comp_state(state, jumped_state))
 self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
 self.rg.bit_generator.state = state
 bit_gen3 = self.rg.bit_generator.jumped()
 rejumped_state = bit_gen3.state
 assert_(comp_state(jumped_state, rejumped_state))
 else:
 bitgen_name = self.rg.bit_generator.__class__.__name__
 if bitgen_name not in ('SFC64',):
 raise AttributeError(f'no "jumped" in {bitgen_name}')
 pytest.skip(f'Jump is not supported by {bitgen_name}')
 
 def test_uniform(self):
 r = self.rg.uniform(-1.0, 0.0, size=10)
 assert_(len(r) == 10)
 assert_((r > -1).all())
 assert_((r <= 0).all())
 
 def test_uniform_array(self):
 r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
 assert_(len(r) == 10)
 assert_((r > -1).all())
 assert_((r <= 0).all())
 r = self.rg.uniform(np.array([-1.0] * 10),
 np.array([0.0] * 10), size=10)
 assert_(len(r) == 10)
 assert_((r > -1).all())
 assert_((r <= 0).all())
 r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
 assert_(len(r) == 10)
 assert_((r > -1).all())
 assert_((r <= 0).all())
 
 def test_random(self):
 assert_(len(self.rg.random(10)) == 10)
 params_0(self.rg.random)
 
 def test_standard_normal_zig(self):
 assert_(len(self.rg.standard_normal(10)) == 10)
 
 def test_standard_normal(self):
 assert_(len(self.rg.standard_normal(10)) == 10)
 params_0(self.rg.standard_normal)
 
 def test_standard_gamma(self):
 assert_(len(self.rg.standard_gamma(10, 10)) == 10)
 assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
 params_1(self.rg.standard_gamma)
 
 def test_standard_exponential(self):
 assert_(len(self.rg.standard_exponential(10)) == 10)
 params_0(self.rg.standard_exponential)
 
 def test_standard_exponential_float(self):
 randoms = self.rg.standard_exponential(10, dtype='float32')
 assert_(len(randoms) == 10)
 assert randoms.dtype == np.float32
 params_0(partial(self.rg.standard_exponential, dtype='float32'))
 
 def test_standard_exponential_float_log(self):
 randoms = self.rg.standard_exponential(10, dtype='float32',
 method='inv')
 assert_(len(randoms) == 10)
 assert randoms.dtype == np.float32
 params_0(partial(self.rg.standard_exponential, dtype='float32',
 method='inv'))
 
 def test_standard_cauchy(self):
 assert_(len(self.rg.standard_cauchy(10)) == 10)
 params_0(self.rg.standard_cauchy)
 
 def test_standard_t(self):
 assert_(len(self.rg.standard_t(10, 10)) == 10)
 params_1(self.rg.standard_t)
 
 def test_binomial(self):
 assert_(self.rg.binomial(10, .5) >= 0)
 assert_(self.rg.binomial(1000, .5) >= 0)
 
 def test_reset_state(self):
 state = self.rg.bit_generator.state
 int_1 = self.rg.integers(2**31)
 self.rg.bit_generator.state = state
 int_2 = self.rg.integers(2**31)
 assert_(int_1 == int_2)
 
 def test_entropy_init(self):
 rg = Generator(self.bit_generator())
 rg2 = Generator(self.bit_generator())
 assert_(not comp_state(rg.bit_generator.state,
 rg2.bit_generator.state))
 
 def test_seed(self):
 rg = Generator(self.bit_generator(*self.seed))
 rg2 = Generator(self.bit_generator(*self.seed))
 rg.random()
 rg2.random()
 assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
 
 def test_reset_state_gauss(self):
 rg = Generator(self.bit_generator(*self.seed))
 rg.standard_normal()
 state = rg.bit_generator.state
 n1 = rg.standard_normal(size=10)
 rg2 = Generator(self.bit_generator())
 rg2.bit_generator.state = state
 n2 = rg2.standard_normal(size=10)
 assert_array_equal(n1, n2)
 
 def test_reset_state_uint32(self):
 rg = Generator(self.bit_generator(*self.seed))
 rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
 state = rg.bit_generator.state
 n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
 rg2 = Generator(self.bit_generator())
 rg2.bit_generator.state = state
 n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
 assert_array_equal(n1, n2)
 
 def test_reset_state_float(self):
 rg = Generator(self.bit_generator(*self.seed))
 rg.random(dtype='float32')
 state = rg.bit_generator.state
 n1 = rg.random(size=10, dtype='float32')
 rg2 = Generator(self.bit_generator())
 rg2.bit_generator.state = state
 n2 = rg2.random(size=10, dtype='float32')
 assert_((n1 == n2).all())
 
 def test_shuffle(self):
 original = np.arange(200, 0, -1)
 permuted = self.rg.permutation(original)
 assert_((original != permuted).any())
 
 def test_permutation(self):
 original = np.arange(200, 0, -1)
 permuted = self.rg.permutation(original)
 assert_((original != permuted).any())
 
 def test_beta(self):
 vals = self.rg.beta(2.0, 2.0, 10)
 assert_(len(vals) == 10)
 vals = self.rg.beta(np.array([2.0] * 10), 2.0)
 assert_(len(vals) == 10)
 vals = self.rg.beta(2.0, np.array([2.0] * 10))
 assert_(len(vals) == 10)
 vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
 assert_(len(vals) == 10)
 vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
 assert_(vals.shape == (10, 10))
 
 def test_bytes(self):
 vals = self.rg.bytes(10)
 assert_(len(vals) == 10)
 
 def test_chisquare(self):
 vals = self.rg.chisquare(2.0, 10)
 assert_(len(vals) == 10)
 params_1(self.rg.chisquare)
 
 def test_exponential(self):
 vals = self.rg.exponential(2.0, 10)
 assert_(len(vals) == 10)
 params_1(self.rg.exponential)
 
 def test_f(self):
 vals = self.rg.f(3, 1000, 10)
 assert_(len(vals) == 10)
 
 def test_gamma(self):
 vals = self.rg.gamma(3, 2, 10)
 assert_(len(vals) == 10)
 
 def test_geometric(self):
 vals = self.rg.geometric(0.5, 10)
 assert_(len(vals) == 10)
 params_1(self.rg.exponential, bounded=True)
 
 def test_gumbel(self):
 vals = self.rg.gumbel(2.0, 2.0, 10)
 assert_(len(vals) == 10)
 
 def test_laplace(self):
 vals = self.rg.laplace(2.0, 2.0, 10)
 assert_(len(vals) == 10)
 
 def test_logitic(self):
 vals = self.rg.logistic(2.0, 2.0, 10)
 assert_(len(vals) == 10)
 
 def test_logseries(self):
 vals = self.rg.logseries(0.5, 10)
 assert_(len(vals) == 10)
 
 def test_negative_binomial(self):
 vals = self.rg.negative_binomial(10, 0.2, 10)
 assert_(len(vals) == 10)
 
 def test_noncentral_chisquare(self):
 vals = self.rg.noncentral_chisquare(10, 2, 10)
 assert_(len(vals) == 10)
 
 def test_noncentral_f(self):
 vals = self.rg.noncentral_f(3, 1000, 2, 10)
 assert_(len(vals) == 10)
 vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
 assert_(len(vals) == 10)
 vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
 assert_(len(vals) == 10)
 vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
 assert_(len(vals) == 10)
 
 def test_normal(self):
 vals = self.rg.normal(10, 0.2, 10)
 assert_(len(vals) == 10)
 
 def test_pareto(self):
 vals = self.rg.pareto(3.0, 10)
 assert_(len(vals) == 10)
 
 def test_poisson(self):
 vals = self.rg.poisson(10, 10)
 assert_(len(vals) == 10)
 vals = self.rg.poisson(np.array([10] * 10))
 assert_(len(vals) == 10)
 params_1(self.rg.poisson)
 
 def test_power(self):
 vals = self.rg.power(0.2, 10)
 assert_(len(vals) == 10)
 
 def test_integers(self):
 vals = self.rg.integers(10, 20, 10)
 assert_(len(vals) == 10)
 
 def test_rayleigh(self):
 vals = self.rg.rayleigh(0.2, 10)
 assert_(len(vals) == 10)
 params_1(self.rg.rayleigh, bounded=True)
 
 def test_vonmises(self):
 vals = self.rg.vonmises(10, 0.2, 10)
 assert_(len(vals) == 10)
 
 def test_wald(self):
 vals = self.rg.wald(1.0, 1.0, 10)
 assert_(len(vals) == 10)
 
 def test_weibull(self):
 vals = self.rg.weibull(1.0, 10)
 assert_(len(vals) == 10)
 
 def test_zipf(self):
 vals = self.rg.zipf(10, 10)
 assert_(len(vals) == 10)
 vals = self.rg.zipf(self.vec_1d)
 assert_(len(vals) == 100)
 vals = self.rg.zipf(self.vec_2d)
 assert_(vals.shape == (1, 100))
 vals = self.rg.zipf(self.mat)
 assert_(vals.shape == (100, 100))
 
 def test_hypergeometric(self):
 vals = self.rg.hypergeometric(25, 25, 20)
 assert_(np.isscalar(vals))
 vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
 assert_(vals.shape == (10,))
 
 def test_triangular(self):
 vals = self.rg.triangular(-5, 0, 5)
 assert_(np.isscalar(vals))
 vals = self.rg.triangular(-5, np.array([0] * 10), 5)
 assert_(vals.shape == (10,))
 
 def test_multivariate_normal(self):
 mean = [0, 0]
 cov = [[1, 0], [0, 100]]  # diagonal covariance
 x = self.rg.multivariate_normal(mean, cov, 5000)
 assert_(x.shape == (5000, 2))
 x_zig = self.rg.multivariate_normal(mean, cov, 5000)
 assert_(x.shape == (5000, 2))
 x_inv = self.rg.multivariate_normal(mean, cov, 5000)
 assert_(x.shape == (5000, 2))
 assert_((x_zig != x_inv).any())
 
 def test_multinomial(self):
 vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
 assert_(vals.shape == (2,))
 vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
 assert_(vals.shape == (10, 2))
 
 def test_dirichlet(self):
 s = self.rg.dirichlet((10, 5, 3), 20)
 assert_(s.shape == (20, 3))
 
 def test_pickle(self):
 pick = pickle.dumps(self.rg)
 unpick = pickle.loads(pick)
 assert_((type(self.rg) == type(unpick)))
 assert_(comp_state(self.rg.bit_generator.state,
 unpick.bit_generator.state))
 
 pick = pickle.dumps(self.rg)
 unpick = pickle.loads(pick)
 assert_((type(self.rg) == type(unpick)))
 assert_(comp_state(self.rg.bit_generator.state,
 unpick.bit_generator.state))
 
 def test_seed_array(self):
 if self.seed_vector_bits is None:
 bitgen_name = self.bit_generator.__name__
 pytest.skip(f'Vector seeding is not supported by {bitgen_name}')
 
 if self.seed_vector_bits == 32:
 dtype = np.uint32
 else:
 dtype = np.uint64
 seed = np.array([1], dtype=dtype)
 bg = self.bit_generator(seed)
 state1 = bg.state
 bg = self.bit_generator(1)
 state2 = bg.state
 assert_(comp_state(state1, state2))
 
 seed = np.arange(4, dtype=dtype)
 bg = self.bit_generator(seed)
 state1 = bg.state
 bg = self.bit_generator(seed[0])
 state2 = bg.state
 assert_(not comp_state(state1, state2))
 
 seed = np.arange(1500, dtype=dtype)
 bg = self.bit_generator(seed)
 state1 = bg.state
 bg = self.bit_generator(seed[0])
 state2 = bg.state
 assert_(not comp_state(state1, state2))
 
 seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
 self.seed_vector_bits - 1) + 1
 bg = self.bit_generator(seed)
 state1 = bg.state
 bg  = self.bit_generator(seed[0])
 state2 = bg.state
 assert_(not comp_state(state1, state2))
 
 def test_uniform_float(self):
 rg = Generator(self.bit_generator(12345))
 warmup(rg)
 state = rg.bit_generator.state
 r1 = rg.random(11, dtype=np.float32)
 rg2 = Generator(self.bit_generator())
 warmup(rg2)
 rg2.bit_generator.state = state
 r2 = rg2.random(11, dtype=np.float32)
 assert_array_equal(r1, r2)
 assert_equal(r1.dtype, np.float32)
 assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
 
 def test_gamma_floats(self):
 rg = Generator(self.bit_generator())
 warmup(rg)
 state = rg.bit_generator.state
 r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
 rg2 = Generator(self.bit_generator())
 warmup(rg2)
 rg2.bit_generator.state = state
 r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
 assert_array_equal(r1, r2)
 assert_equal(r1.dtype, np.float32)
 assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
 
 def test_normal_floats(self):
 rg = Generator(self.bit_generator())
 warmup(rg)
 state = rg.bit_generator.state
 r1 = rg.standard_normal(11, dtype=np.float32)
 rg2 = Generator(self.bit_generator())
 warmup(rg2)
 rg2.bit_generator.state = state
 r2 = rg2.standard_normal(11, dtype=np.float32)
 assert_array_equal(r1, r2)
 assert_equal(r1.dtype, np.float32)
 assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
 
 def test_normal_zig_floats(self):
 rg = Generator(self.bit_generator())
 warmup(rg)
 state = rg.bit_generator.state
 r1 = rg.standard_normal(11, dtype=np.float32)
 rg2 = Generator(self.bit_generator())
 warmup(rg2)
 rg2.bit_generator.state = state
 r2 = rg2.standard_normal(11, dtype=np.float32)
 assert_array_equal(r1, r2)
 assert_equal(r1.dtype, np.float32)
 assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
 
 def test_output_fill(self):
 rg = self.rg
 state = rg.bit_generator.state
 size = (31, 7, 97)
 existing = np.empty(size)
 rg.bit_generator.state = state
 rg.standard_normal(out=existing)
 rg.bit_generator.state = state
 direct = rg.standard_normal(size=size)
 assert_equal(direct, existing)
 
 sized = np.empty(size)
 rg.bit_generator.state = state
 rg.standard_normal(out=sized, size=sized.shape)
 
 existing = np.empty(size, dtype=np.float32)
 rg.bit_generator.state = state
 rg.standard_normal(out=existing, dtype=np.float32)
 rg.bit_generator.state = state
 direct = rg.standard_normal(size=size, dtype=np.float32)
 assert_equal(direct, existing)
 
 def test_output_filling_uniform(self):
 rg = self.rg
 state = rg.bit_generator.state
 size = (31, 7, 97)
 existing = np.empty(size)
 rg.bit_generator.state = state
 rg.random(out=existing)
 rg.bit_generator.state = state
 direct = rg.random(size=size)
 assert_equal(direct, existing)
 
 existing = np.empty(size, dtype=np.float32)
 rg.bit_generator.state = state
 rg.random(out=existing, dtype=np.float32)
 rg.bit_generator.state = state
 direct = rg.random(size=size, dtype=np.float32)
 assert_equal(direct, existing)
 
 def test_output_filling_exponential(self):
 rg = self.rg
 state = rg.bit_generator.state
 size = (31, 7, 97)
 existing = np.empty(size)
 rg.bit_generator.state = state
 rg.standard_exponential(out=existing)
 rg.bit_generator.state = state
 direct = rg.standard_exponential(size=size)
 assert_equal(direct, existing)
 
 existing = np.empty(size, dtype=np.float32)
 rg.bit_generator.state = state
 rg.standard_exponential(out=existing, dtype=np.float32)
 rg.bit_generator.state = state
 direct = rg.standard_exponential(size=size, dtype=np.float32)
 assert_equal(direct, existing)
 
 def test_output_filling_gamma(self):
 rg = self.rg
 state = rg.bit_generator.state
 size = (31, 7, 97)
 existing = np.zeros(size)
 rg.bit_generator.state = state
 rg.standard_gamma(1.0, out=existing)
 rg.bit_generator.state = state
 direct = rg.standard_gamma(1.0, size=size)
 assert_equal(direct, existing)
 
 existing = np.zeros(size, dtype=np.float32)
 rg.bit_generator.state = state
 rg.standard_gamma(1.0, out=existing, dtype=np.float32)
 rg.bit_generator.state = state
 direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
 assert_equal(direct, existing)
 
 def test_output_filling_gamma_broadcast(self):
 rg = self.rg
 state = rg.bit_generator.state
 size = (31, 7, 97)
 mu = np.arange(97.0) + 1.0
 existing = np.zeros(size)
 rg.bit_generator.state = state
 rg.standard_gamma(mu, out=existing)
 rg.bit_generator.state = state
 direct = rg.standard_gamma(mu, size=size)
 assert_equal(direct, existing)
 
 existing = np.zeros(size, dtype=np.float32)
 rg.bit_generator.state = state
 rg.standard_gamma(mu, out=existing, dtype=np.float32)
 rg.bit_generator.state = state
 direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
 assert_equal(direct, existing)
 
 def test_output_fill_error(self):
 rg = self.rg
 size = (31, 7, 97)
 existing = np.empty(size)
 with pytest.raises(TypeError):
 rg.standard_normal(out=existing, dtype=np.float32)
 with pytest.raises(ValueError):
 rg.standard_normal(out=existing[::3])
 existing = np.empty(size, dtype=np.float32)
 with pytest.raises(TypeError):
 rg.standard_normal(out=existing, dtype=np.float64)
 
 existing = np.zeros(size, dtype=np.float32)
 with pytest.raises(TypeError):
 rg.standard_gamma(1.0, out=existing, dtype=np.float64)
 with pytest.raises(ValueError):
 rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
 existing = np.zeros(size, dtype=np.float64)
 with pytest.raises(TypeError):
 rg.standard_gamma(1.0, out=existing, dtype=np.float32)
 with pytest.raises(ValueError):
 rg.standard_gamma(1.0, out=existing[::3])
 
 def test_integers_broadcast(self, dtype):
 if dtype == np.bool_:
 upper = 2
 lower = 0
 else:
 info = np.iinfo(dtype)
 upper = int(info.max) + 1
 lower = info.min
 self._reset_state()
 a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
 self._reset_state()
 b = self.rg.integers([lower] * 10, upper, dtype=dtype)
 assert_equal(a, b)
 self._reset_state()
 c = self.rg.integers(lower, upper, size=10, dtype=dtype)
 assert_equal(a, c)
 self._reset_state()
 d = self.rg.integers(np.array(
 [lower] * 10), np.array([upper], dtype=object), size=10,
 dtype=dtype)
 assert_equal(a, d)
 self._reset_state()
 e = self.rg.integers(
 np.array([lower] * 10), np.array([upper] * 10), size=10,
 dtype=dtype)
 assert_equal(a, e)
 
 self._reset_state()
 a = self.rg.integers(0, upper, size=10, dtype=dtype)
 self._reset_state()
 b = self.rg.integers([upper] * 10, dtype=dtype)
 assert_equal(a, b)
 
 def test_integers_numpy(self, dtype):
 high = np.array([1])
 low = np.array([0])
 
 out = self.rg.integers(low, high, dtype=dtype)
 assert out.shape == (1,)
 
 out = self.rg.integers(low[0], high, dtype=dtype)
 assert out.shape == (1,)
 
 out = self.rg.integers(low, high[0], dtype=dtype)
 assert out.shape == (1,)
 
 def test_integers_broadcast_errors(self, dtype):
 if dtype == np.bool_:
 upper = 2
 lower = 0
 else:
 info = np.iinfo(dtype)
 upper = int(info.max) + 1
 lower = info.min
 with pytest.raises(ValueError):
 self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
 with pytest.raises(ValueError):
 self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
 with pytest.raises(ValueError):
 self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
 with pytest.raises(ValueError):
 self.rg.integers([0], [0], dtype=dtype)
 
 
 class TestMT19937(RNG):
 @classmethod
 def setup_class(cls):
 cls.bit_generator = MT19937
 cls.advance = None
 cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
 cls.rg = Generator(cls.bit_generator(*cls.seed))
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 32
 cls._extra_setup()
 cls.seed_error = ValueError
 
 def test_numpy_state(self):
 nprg = np.random.RandomState()
 nprg.standard_normal(99)
 state = nprg.get_state()
 self.rg.bit_generator.state = state
 state2 = self.rg.bit_generator.state
 assert_((state[1] == state2['state']['key']).all())
 assert_((state[2] == state2['state']['pos']))
 
 
 class TestPhilox(RNG):
 @classmethod
 def setup_class(cls):
 cls.bit_generator = Philox
 cls.advance = 2**63 + 2**31 + 2**15 + 1
 cls.seed = [12345]
 cls.rg = Generator(cls.bit_generator(*cls.seed))
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 64
 cls._extra_setup()
 
 
 class TestSFC64(RNG):
 @classmethod
 def setup_class(cls):
 cls.bit_generator = SFC64
 cls.advance = None
 cls.seed = [12345]
 cls.rg = Generator(cls.bit_generator(*cls.seed))
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 192
 cls._extra_setup()
 
 
 class TestPCG64(RNG):
 @classmethod
 def setup_class(cls):
 cls.bit_generator = PCG64
 cls.advance = 2**63 + 2**31 + 2**15 + 1
 cls.seed = [12345]
 cls.rg = Generator(cls.bit_generator(*cls.seed))
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 64
 cls._extra_setup()
 
 
 class TestPCG64DXSM(RNG):
 @classmethod
 def setup_class(cls):
 cls.bit_generator = PCG64DXSM
 cls.advance = 2**63 + 2**31 + 2**15 + 1
 cls.seed = [12345]
 cls.rg = Generator(cls.bit_generator(*cls.seed))
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 64
 cls._extra_setup()
 
 
 class TestDefaultRNG(RNG):
 @classmethod
 def setup_class(cls):
 # This will duplicate some tests that directly instantiate a fresh
 # Generator(), but that's okay.
 cls.bit_generator = PCG64
 cls.advance = 2**63 + 2**31 + 2**15 + 1
 cls.seed = [12345]
 cls.rg = np.random.default_rng(*cls.seed)
 cls.initial_state = cls.rg.bit_generator.state
 cls.seed_vector_bits = 64
 cls._extra_setup()
 
 def test_default_is_pcg64(self):
 # In order to change the default BitGenerator, we'll go through
 # a deprecation cycle to move to a different function.
 assert_(isinstance(self.rg.bit_generator, PCG64))
 
 def test_seed(self):
 np.random.default_rng()
 np.random.default_rng(None)
 np.random.default_rng(12345)
 np.random.default_rng(0)
 np.random.default_rng(43660444402423911716352051725018508569)
 np.random.default_rng([43660444402423911716352051725018508569,
 279705150948142787361475340226491943209])
 with pytest.raises(ValueError):
 np.random.default_rng(-1)
 with pytest.raises(ValueError):
 np.random.default_rng([12345, -1])
 
 |