| Viewing file:  test_generator_mt19937.py (112.19 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
import sysimport hashlib
 
 import pytest
 
 import numpy as np
 from numpy.linalg import LinAlgError
 from numpy.testing import (
 assert_, assert_raises, assert_equal, assert_allclose,
 assert_warns, assert_no_warnings, assert_array_equal,
 assert_array_almost_equal, suppress_warnings, IS_WASM)
 
 from numpy.random import Generator, MT19937, SeedSequence, RandomState
 
 random = Generator(MT19937())
 
 JUMP_TEST_DATA = [
 {
 "seed": 0,
 "steps": 10,
 "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9},
 "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598},
 },
 {
 "seed":384908324,
 "steps":312,
 "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311},
 "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276},
 },
 {
 "seed": [839438204, 980239840, 859048019, 821],
 "steps": 511,
 "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510},
 "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475},
 },
 ]
 
 @pytest.fixture(scope='module', params=[True, False])
 def endpoint(request):
 return request.param
 
 
 class TestSeed:
 def test_scalar(self):
 s = Generator(MT19937(0))
 assert_equal(s.integers(1000), 479)
 s = Generator(MT19937(4294967295))
 assert_equal(s.integers(1000), 324)
 
 def test_array(self):
 s = Generator(MT19937(range(10)))
 assert_equal(s.integers(1000), 465)
 s = Generator(MT19937(np.arange(10)))
 assert_equal(s.integers(1000), 465)
 s = Generator(MT19937([0]))
 assert_equal(s.integers(1000), 479)
 s = Generator(MT19937([4294967295]))
 assert_equal(s.integers(1000), 324)
 
 def test_seedsequence(self):
 s = MT19937(SeedSequence(0))
 assert_equal(s.random_raw(1), 2058676884)
 
 def test_invalid_scalar(self):
 # seed must be an unsigned 32 bit integer
 assert_raises(TypeError, MT19937, -0.5)
 assert_raises(ValueError, MT19937, -1)
 
 def test_invalid_array(self):
 # seed must be an unsigned integer
 assert_raises(TypeError, MT19937, [-0.5])
 assert_raises(ValueError, MT19937, [-1])
 assert_raises(ValueError, MT19937, [1, -2, 4294967296])
 
 def test_noninstantized_bitgen(self):
 assert_raises(ValueError, Generator, MT19937)
 
 
 class TestBinomial:
 def test_n_zero(self):
 # Tests the corner case of n == 0 for the binomial distribution.
 # binomial(0, p) should be zero for any p in [0, 1].
 # This test addresses issue #3480.
 zeros = np.zeros(2, dtype='int')
 for p in [0, .5, 1]:
 assert_(random.binomial(0, p) == 0)
 assert_array_equal(random.binomial(zeros, p), zeros)
 
 def test_p_is_nan(self):
 # Issue #4571.
 assert_raises(ValueError, random.binomial, 1, np.nan)
 
 
 class TestMultinomial:
 def test_basic(self):
 random.multinomial(100, [0.2, 0.8])
 
 def test_zero_probability(self):
 random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
 
 def test_int_negative_interval(self):
 assert_(-5 <= random.integers(-5, -1) < -1)
 x = random.integers(-5, -1, 5)
 assert_(np.all(-5 <= x))
 assert_(np.all(x < -1))
 
 def test_size(self):
 # gh-3173
 p = [0.5, 0.5]
 assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
 assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
 assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
 assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
 assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
 assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
 (2, 2, 2))
 
 assert_raises(TypeError, random.multinomial, 1, p,
 float(1))
 
 def test_invalid_prob(self):
 assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
 assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
 
 def test_invalid_n(self):
 assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
 assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2])
 
 def test_p_non_contiguous(self):
 p = np.arange(15.)
 p /= np.sum(p[1::3])
 pvals = p[1::3]
 random = Generator(MT19937(1432985819))
 non_contig = random.multinomial(100, pvals=pvals)
 random = Generator(MT19937(1432985819))
 contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
 assert_array_equal(non_contig, contig)
 
 def test_multinomial_pvals_float32(self):
 x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09,
 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32)
 pvals = x / x.sum()
 random = Generator(MT19937(1432985819))
 match = r"[\w\s]*pvals array is cast to 64-bit floating"
 with pytest.raises(ValueError, match=match):
 random.multinomial(1, pvals)
 
 class TestMultivariateHypergeometric:
 
 def setup_method(self):
 self.seed = 8675309
 
 def test_argument_validation(self):
 # Error cases...
 
 # `colors` must be a 1-d sequence
 assert_raises(ValueError, random.multivariate_hypergeometric,
 10, 4)
 
 # Negative nsample
 assert_raises(ValueError, random.multivariate_hypergeometric,
 [2, 3, 4], -1)
 
 # Negative color
 assert_raises(ValueError, random.multivariate_hypergeometric,
 [-1, 2, 3], 2)
 
 # nsample exceeds sum(colors)
 assert_raises(ValueError, random.multivariate_hypergeometric,
 [2, 3, 4], 10)
 
 # nsample exceeds sum(colors) (edge case of empty colors)
 assert_raises(ValueError, random.multivariate_hypergeometric,
 [], 1)
 
 # Validation errors associated with very large values in colors.
 assert_raises(ValueError, random.multivariate_hypergeometric,
 [999999999, 101], 5, 1, 'marginals')
 
 int64_info = np.iinfo(np.int64)
 max_int64 = int64_info.max
 max_int64_index = max_int64 // int64_info.dtype.itemsize
 assert_raises(ValueError, random.multivariate_hypergeometric,
 [max_int64_index - 100, 101], 5, 1, 'count')
 
 @pytest.mark.parametrize('method', ['count', 'marginals'])
 def test_edge_cases(self, method):
 # Set the seed, but in fact, all the results in this test are
 # deterministic, so we don't really need this.
 random = Generator(MT19937(self.seed))
 
 x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method)
 assert_array_equal(x, [0, 0, 0])
 
 x = random.multivariate_hypergeometric([], 0, method=method)
 assert_array_equal(x, [])
 
 x = random.multivariate_hypergeometric([], 0, size=1, method=method)
 assert_array_equal(x, np.empty((1, 0), dtype=np.int64))
 
 x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method)
 assert_array_equal(x, [0, 0, 0])
 
 x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method)
 assert_array_equal(x, [3, 0, 0])
 
 colors = [1, 1, 0, 1, 1]
 x = random.multivariate_hypergeometric(colors, sum(colors),
 method=method)
 assert_array_equal(x, colors)
 
 x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3,
 method=method)
 assert_array_equal(x, [[3, 4, 5]]*3)
 
 # Cases for nsample:
 #     nsample < 10
 #     10 <= nsample < colors.sum()/2
 #     colors.sum()/2 < nsample < colors.sum() - 10
 #     colors.sum() - 10 < nsample < colors.sum()
 @pytest.mark.parametrize('nsample', [8, 25, 45, 55])
 @pytest.mark.parametrize('method', ['count', 'marginals'])
 @pytest.mark.parametrize('size', [5, (2, 3), 150000])
 def test_typical_cases(self, nsample, method, size):
 random = Generator(MT19937(self.seed))
 
 colors = np.array([10, 5, 20, 25])
 sample = random.multivariate_hypergeometric(colors, nsample, size,
 method=method)
 if isinstance(size, int):
 expected_shape = (size,) + colors.shape
 else:
 expected_shape = size + colors.shape
 assert_equal(sample.shape, expected_shape)
 assert_((sample >= 0).all())
 assert_((sample <= colors).all())
 assert_array_equal(sample.sum(axis=-1),
 np.full(size, fill_value=nsample, dtype=int))
 if isinstance(size, int) and size >= 100000:
 # This sample is large enough to compare its mean to
 # the expected values.
 assert_allclose(sample.mean(axis=0),
 nsample * colors / colors.sum(),
 rtol=1e-3, atol=0.005)
 
 def test_repeatability1(self):
 random = Generator(MT19937(self.seed))
 sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5,
 method='count')
 expected = np.array([[2, 1, 2],
 [2, 1, 2],
 [1, 1, 3],
 [2, 0, 3],
 [2, 1, 2]])
 assert_array_equal(sample, expected)
 
 def test_repeatability2(self):
 random = Generator(MT19937(self.seed))
 sample = random.multivariate_hypergeometric([20, 30, 50], 50,
 size=5,
 method='marginals')
 expected = np.array([[ 9, 17, 24],
 [ 7, 13, 30],
 [ 9, 15, 26],
 [ 9, 17, 24],
 [12, 14, 24]])
 assert_array_equal(sample, expected)
 
 def test_repeatability3(self):
 random = Generator(MT19937(self.seed))
 sample = random.multivariate_hypergeometric([20, 30, 50], 12,
 size=5,
 method='marginals')
 expected = np.array([[2, 3, 7],
 [5, 3, 4],
 [2, 5, 5],
 [5, 3, 4],
 [1, 5, 6]])
 assert_array_equal(sample, expected)
 
 
 class TestSetState:
 def setup_method(self):
 self.seed = 1234567890
 self.rg = Generator(MT19937(self.seed))
 self.bit_generator = self.rg.bit_generator
 self.state = self.bit_generator.state
 self.legacy_state = (self.state['bit_generator'],
 self.state['state']['key'],
 self.state['state']['pos'])
 
 def test_gaussian_reset(self):
 # Make sure the cached every-other-Gaussian is reset.
 old = self.rg.standard_normal(size=3)
 self.bit_generator.state = self.state
 new = self.rg.standard_normal(size=3)
 assert_(np.all(old == new))
 
 def test_gaussian_reset_in_media_res(self):
 # When the state is saved with a cached Gaussian, make sure the
 # cached Gaussian is restored.
 
 self.rg.standard_normal()
 state = self.bit_generator.state
 old = self.rg.standard_normal(size=3)
 self.bit_generator.state = state
 new = self.rg.standard_normal(size=3)
 assert_(np.all(old == new))
 
 def test_negative_binomial(self):
 # Ensure that the negative binomial results take floating point
 # arguments without truncation.
 self.rg.negative_binomial(0.5, 0.5)
 
 
 class TestIntegers:
 rfunc = random.integers
 
 # valid integer/boolean types
 itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
 np.int32, np.uint32, np.int64, np.uint64]
 
 def test_unsupported_type(self, endpoint):
 assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float)
 
 def test_bounds_checking(self, endpoint):
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd,
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1,
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, ubnd, lbnd,
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint,
 dtype=dt)
 
 assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd,
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1],
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, [ubnd], [lbnd],
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, 1, [0],
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, [ubnd+1], [ubnd],
 endpoint=endpoint, dtype=dt)
 
 def test_bounds_checking_array(self, endpoint):
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint)
 
 assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2,
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, [lbnd] * 2,
 [ubnd + 1] * 2, endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2,
 endpoint=endpoint, dtype=dt)
 assert_raises(ValueError, self.rfunc, [1] * 2, 0,
 endpoint=endpoint, dtype=dt)
 
 def test_rng_zero_and_extremes(self, endpoint):
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 is_open = not endpoint
 
 tgt = ubnd - 1
 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
 endpoint=endpoint, dtype=dt), tgt)
 assert_equal(self.rfunc([tgt], tgt + is_open, size=1000,
 endpoint=endpoint, dtype=dt), tgt)
 
 tgt = lbnd
 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
 endpoint=endpoint, dtype=dt), tgt)
 assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000,
 endpoint=endpoint, dtype=dt), tgt)
 
 tgt = (lbnd + ubnd) // 2
 assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
 endpoint=endpoint, dtype=dt), tgt)
 assert_equal(self.rfunc([tgt], [tgt + is_open],
 size=1000, endpoint=endpoint, dtype=dt),
 tgt)
 
 def test_rng_zero_and_extremes_array(self, endpoint):
 size = 1000
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 
 tgt = ubnd - 1
 assert_equal(self.rfunc([tgt], [tgt + 1],
 size=size, dtype=dt), tgt)
 assert_equal(self.rfunc(
 [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
 assert_equal(self.rfunc(
 [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
 
 tgt = lbnd
 assert_equal(self.rfunc([tgt], [tgt + 1],
 size=size, dtype=dt), tgt)
 assert_equal(self.rfunc(
 [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
 assert_equal(self.rfunc(
 [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
 
 tgt = (lbnd + ubnd) // 2
 assert_equal(self.rfunc([tgt], [tgt + 1],
 size=size, dtype=dt), tgt)
 assert_equal(self.rfunc(
 [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
 assert_equal(self.rfunc(
 [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
 
 def test_full_range(self, endpoint):
 # Test for ticket #1690
 
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 
 try:
 self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
 except Exception as e:
 raise AssertionError("No error should have been raised, "
 "but one was with the following "
 "message:\n\n%s" % str(e))
 
 def test_full_range_array(self, endpoint):
 # Test for ticket #1690
 
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 
 try:
 self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt)
 except Exception as e:
 raise AssertionError("No error should have been raised, "
 "but one was with the following "
 "message:\n\n%s" % str(e))
 
 def test_in_bounds_fuzz(self, endpoint):
 # Don't use fixed seed
 random = Generator(MT19937())
 
 for dt in self.itype[1:]:
 for ubnd in [4, 8, 16]:
 vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16,
 endpoint=endpoint, dtype=dt)
 assert_(vals.max() < ubnd)
 assert_(vals.min() >= 2)
 
 vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint,
 dtype=bool)
 assert_(vals.max() < 2)
 assert_(vals.min() >= 0)
 
 def test_scalar_array_equiv(self, endpoint):
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 
 size = 1000
 random = Generator(MT19937(1234))
 scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint,
 dtype=dt)
 
 random = Generator(MT19937(1234))
 scalar_array = random.integers([lbnd], [ubnd], size=size,
 endpoint=endpoint, dtype=dt)
 
 random = Generator(MT19937(1234))
 array = random.integers([lbnd] * size, [ubnd] *
 size, size=size, endpoint=endpoint, dtype=dt)
 assert_array_equal(scalar, scalar_array)
 assert_array_equal(scalar, array)
 
 def test_repeatability(self, endpoint):
 # We use a sha256 hash of generated sequences of 1000 samples
 # in the range [0, 6) for all but bool, where the range
 # is [0, 2). Hashes are for little endian numbers.
 tgt = {'bool':   '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3',
 'int16':  '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4',
 'int32':  'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b',
 'int64':  '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1',
 'int8':   '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1',
 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4',
 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b',
 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1',
 'uint8':  '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'}
 
 for dt in self.itype[1:]:
 random = Generator(MT19937(1234))
 
 # view as little endian for hash
 if sys.byteorder == 'little':
 val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
 dtype=dt)
 else:
 val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
 dtype=dt).byteswap()
 
 res = hashlib.sha256(val).hexdigest()
 assert_(tgt[np.dtype(dt).name] == res)
 
 # bools do not depend on endianness
 random = Generator(MT19937(1234))
 val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint,
 dtype=bool).view(np.int8)
 res = hashlib.sha256(val).hexdigest()
 assert_(tgt[np.dtype(bool).name] == res)
 
 def test_repeatability_broadcasting(self, endpoint):
 for dt in self.itype:
 lbnd = 0 if dt in (bool, np.bool_) else np.iinfo(dt).min
 ubnd = 2 if dt in (bool, np.bool_) else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 
 # view as little endian for hash
 random = Generator(MT19937(1234))
 val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint,
 dtype=dt)
 
 random = Generator(MT19937(1234))
 val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint,
 dtype=dt)
 
 assert_array_equal(val, val_bc)
 
 random = Generator(MT19937(1234))
 val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000,
 endpoint=endpoint, dtype=dt)
 
 assert_array_equal(val, val_bc)
 
 @pytest.mark.parametrize(
 'bound, expected',
 [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612,
 3769704066, 1170797179, 4108474671])),
 (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613,
 3769704067, 1170797180, 4108474672])),
 (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673,
 1831631863, 1215661561, 3869512430]))]
 )
 def test_repeatability_32bit_boundary(self, bound, expected):
 for size in [None, len(expected)]:
 random = Generator(MT19937(1234))
 x = random.integers(bound, size=size)
 assert_equal(x, expected if size is not None else expected[0])
 
 def test_repeatability_32bit_boundary_broadcasting(self):
 desired = np.array([[[1622936284, 3620788691, 1659384060],
 [1417365545,  760222891, 1909653332],
 [3788118662,  660249498, 4092002593]],
 [[3625610153, 2979601262, 3844162757],
 [ 685800658,  120261497, 2694012896],
 [1207779440, 1586594375, 3854335050]],
 [[3004074748, 2310761796, 3012642217],
 [2067714190, 2786677879, 1363865881],
 [ 791663441, 1867303284, 2169727960]],
 [[1939603804, 1250951100,  298950036],
 [1040128489, 3791912209, 3317053765],
 [3155528714,   61360675, 2305155588]],
 [[ 817688762, 1335621943, 3288952434],
 [1770890872, 1102951817, 1957607470],
 [3099996017,  798043451,   48334215]]])
 for size in [None, (5, 3, 3)]:
 random = Generator(MT19937(12345))
 x = random.integers([[-1], [0], [1]],
 [2**32 - 1, 2**32, 2**32 + 1],
 size=size)
 assert_array_equal(x, desired if size is not None else desired[0])
 
 def test_int64_uint64_broadcast_exceptions(self, endpoint):
 configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)),
 np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0),
 (-2**63-1, -2**63-1))}
 for dtype in configs:
 for config in configs[dtype]:
 low, high = config
 high = high - endpoint
 low_a = np.array([[low]*10])
 high_a = np.array([high] * 10)
 assert_raises(ValueError, random.integers, low, high,
 endpoint=endpoint, dtype=dtype)
 assert_raises(ValueError, random.integers, low_a, high,
 endpoint=endpoint, dtype=dtype)
 assert_raises(ValueError, random.integers, low, high_a,
 endpoint=endpoint, dtype=dtype)
 assert_raises(ValueError, random.integers, low_a, high_a,
 endpoint=endpoint, dtype=dtype)
 
 low_o = np.array([[low]*10], dtype=object)
 high_o = np.array([high] * 10, dtype=object)
 assert_raises(ValueError, random.integers, low_o, high,
 endpoint=endpoint, dtype=dtype)
 assert_raises(ValueError, random.integers, low, high_o,
 endpoint=endpoint, dtype=dtype)
 assert_raises(ValueError, random.integers, low_o, high_o,
 endpoint=endpoint, dtype=dtype)
 
 def test_int64_uint64_corner_case(self, endpoint):
 # When stored in Numpy arrays, `lbnd` is casted
 # as np.int64, and `ubnd` is casted as np.uint64.
 # Checking whether `lbnd` >= `ubnd` used to be
 # done solely via direct comparison, which is incorrect
 # because when Numpy tries to compare both numbers,
 # it casts both to np.float64 because there is
 # no integer superset of np.int64 and np.uint64. However,
 # `ubnd` is too large to be represented in np.float64,
 # causing it be round down to np.iinfo(np.int64).max,
 # leading to a ValueError because `lbnd` now equals
 # the new `ubnd`.
 
 dt = np.int64
 tgt = np.iinfo(np.int64).max
 lbnd = np.int64(np.iinfo(np.int64).max)
 ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint)
 
 # None of these function calls should
 # generate a ValueError now.
 actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt)
 assert_equal(actual, tgt)
 
 def test_respect_dtype_singleton(self, endpoint):
 # See gh-7203
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 dt = np.bool_ if dt is bool else dt
 
 sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
 assert_equal(sample.dtype, dt)
 
 for dt in (bool, int, np.compat.long):
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 
 # gh-7284: Ensure that we get Python data types
 sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
 assert not hasattr(sample, 'dtype')
 assert_equal(type(sample), dt)
 
 def test_respect_dtype_array(self, endpoint):
 # See gh-7203
 for dt in self.itype:
 lbnd = 0 if dt is bool else np.iinfo(dt).min
 ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
 ubnd = ubnd - 1 if endpoint else ubnd
 dt = np.bool_ if dt is bool else dt
 
 sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt)
 assert_equal(sample.dtype, dt)
 sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint,
 dtype=dt)
 assert_equal(sample.dtype, dt)
 
 def test_zero_size(self, endpoint):
 # See gh-7203
 for dt in self.itype:
 sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt)
 assert sample.shape == (3, 0, 4)
 assert sample.dtype == dt
 assert self.rfunc(0, -10, 0, endpoint=endpoint,
 dtype=dt).shape == (0,)
 assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape,
 (3, 0, 4))
 assert_equal(random.integers(0, -10, size=0).shape, (0,))
 assert_equal(random.integers(10, 10, size=0).shape, (0,))
 
 def test_error_byteorder(self):
 other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
 with pytest.raises(ValueError):
 random.integers(0, 200, size=10, dtype=other_byteord_dt)
 
 # chi2max is the maximum acceptable chi-squared value.
 @pytest.mark.slow
 @pytest.mark.parametrize('sample_size,high,dtype,chi2max',
 [(5000000, 5, np.int8, 125.0),          # p-value ~4.6e-25
 (5000000, 7, np.uint8, 150.0),         # p-value ~7.7e-30
 (10000000, 2500, np.int16, 3300.0),    # p-value ~3.0e-25
 (50000000, 5000, np.uint16, 6500.0),   # p-value ~3.5e-25
 ])
 def test_integers_small_dtype_chisquared(self, sample_size, high,
 dtype, chi2max):
 # Regression test for gh-14774.
 samples = random.integers(high, size=sample_size, dtype=dtype)
 
 values, counts = np.unique(samples, return_counts=True)
 expected = sample_size / high
 chi2 = ((counts - expected)**2 / expected).sum()
 assert chi2 < chi2max
 
 
 class TestRandomDist:
 # Make sure the random distribution returns the correct value for a
 # given seed
 
 def setup_method(self):
 self.seed = 1234567890
 
 def test_integers(self):
 random = Generator(MT19937(self.seed))
 actual = random.integers(-99, 99, size=(3, 2))
 desired = np.array([[-80, -56], [41, 37], [-83, -16]])
 assert_array_equal(actual, desired)
 
 def test_integers_masked(self):
 # Test masked rejection sampling algorithm to generate array of
 # uint32 in an interval.
 random = Generator(MT19937(self.seed))
 actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32)
 desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32)
 assert_array_equal(actual, desired)
 
 def test_integers_closed(self):
 random = Generator(MT19937(self.seed))
 actual = random.integers(-99, 99, size=(3, 2), endpoint=True)
 desired = np.array([[-80, -56], [ 41, 38], [-83, -15]])
 assert_array_equal(actual, desired)
 
 def test_integers_max_int(self):
 # Tests whether integers with closed=True can generate the
 # maximum allowed Python int that can be converted
 # into a C long. Previous implementations of this
 # method have thrown an OverflowError when attempting
 # to generate this integer.
 actual = random.integers(np.iinfo('l').max, np.iinfo('l').max,
 endpoint=True)
 
 desired = np.iinfo('l').max
 assert_equal(actual, desired)
 
 def test_random(self):
 random = Generator(MT19937(self.seed))
 actual = random.random((3, 2))
 desired = np.array([[0.096999199829214, 0.707517457682192],
 [0.084364834598269, 0.767731206553125],
 [0.665069021359413, 0.715487190596693]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 random = Generator(MT19937(self.seed))
 actual = random.random()
 assert_array_almost_equal(actual, desired[0, 0], decimal=15)
 
 def test_random_float(self):
 random = Generator(MT19937(self.seed))
 actual = random.random((3, 2))
 desired = np.array([[0.0969992 , 0.70751746],
 [0.08436483, 0.76773121],
 [0.66506902, 0.71548719]])
 assert_array_almost_equal(actual, desired, decimal=7)
 
 def test_random_float_scalar(self):
 random = Generator(MT19937(self.seed))
 actual = random.random(dtype=np.float32)
 desired = 0.0969992
 assert_array_almost_equal(actual, desired, decimal=7)
 
 @pytest.mark.parametrize('dtype, uint_view_type',
 [(np.float32, np.uint32),
 (np.float64, np.uint64)])
 def test_random_distribution_of_lsb(self, dtype, uint_view_type):
 random = Generator(MT19937(self.seed))
 sample = random.random(100000, dtype=dtype)
 num_ones_in_lsb = np.count_nonzero(sample.view(uint_view_type) & 1)
 # The probability of a 1 in the least significant bit is 0.25.
 # With a sample size of 100000, the probability that num_ones_in_lsb
 # is outside the following range is less than 5e-11.
 assert 24100 < num_ones_in_lsb < 25900
 
 def test_random_unsupported_type(self):
 assert_raises(TypeError, random.random, dtype='int32')
 
 def test_choice_uniform_replace(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice(4, 4)
 desired = np.array([0, 0, 2, 2], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 def test_choice_nonuniform_replace(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
 desired = np.array([0, 1, 0, 1], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 def test_choice_uniform_noreplace(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice(4, 3, replace=False)
 desired = np.array([2, 0, 3], dtype=np.int64)
 assert_array_equal(actual, desired)
 actual = random.choice(4, 4, replace=False, shuffle=False)
 desired = np.arange(4, dtype=np.int64)
 assert_array_equal(actual, desired)
 
 def test_choice_nonuniform_noreplace(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
 desired = np.array([0, 2, 3], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 def test_choice_noninteger(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice(['a', 'b', 'c', 'd'], 4)
 desired = np.array(['a', 'a', 'c', 'c'])
 assert_array_equal(actual, desired)
 
 def test_choice_multidimensional_default_axis(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3)
 desired = np.array([[0, 1], [0, 1], [4, 5]])
 assert_array_equal(actual, desired)
 
 def test_choice_multidimensional_custom_axis(self):
 random = Generator(MT19937(self.seed))
 actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1)
 desired = np.array([[0], [2], [4], [6]])
 assert_array_equal(actual, desired)
 
 def test_choice_exceptions(self):
 sample = random.choice
 assert_raises(ValueError, sample, -1, 3)
 assert_raises(ValueError, sample, 3., 3)
 assert_raises(ValueError, sample, [], 3)
 assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
 p=[[0.25, 0.25], [0.25, 0.25]])
 assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
 assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
 assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
 assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
 # gh-13087
 assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
 assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
 assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
 assert_raises(ValueError, sample, [1, 2, 3], 2,
 replace=False, p=[1, 0, 0])
 
 def test_choice_return_shape(self):
 p = [0.1, 0.9]
 # Check scalar
 assert_(np.isscalar(random.choice(2, replace=True)))
 assert_(np.isscalar(random.choice(2, replace=False)))
 assert_(np.isscalar(random.choice(2, replace=True, p=p)))
 assert_(np.isscalar(random.choice(2, replace=False, p=p)))
 assert_(np.isscalar(random.choice([1, 2], replace=True)))
 assert_(random.choice([None], replace=True) is None)
 a = np.array([1, 2])
 arr = np.empty(1, dtype=object)
 arr[0] = a
 assert_(random.choice(arr, replace=True) is a)
 
 # Check 0-d array
 s = tuple()
 assert_(not np.isscalar(random.choice(2, s, replace=True)))
 assert_(not np.isscalar(random.choice(2, s, replace=False)))
 assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
 assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
 assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
 assert_(random.choice([None], s, replace=True).ndim == 0)
 a = np.array([1, 2])
 arr = np.empty(1, dtype=object)
 arr[0] = a
 assert_(random.choice(arr, s, replace=True).item() is a)
 
 # Check multi dimensional array
 s = (2, 3)
 p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
 assert_equal(random.choice(6, s, replace=True).shape, s)
 assert_equal(random.choice(6, s, replace=False).shape, s)
 assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
 assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
 assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
 
 # Check zero-size
 assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
 assert_equal(random.integers(0, -10, size=0).shape, (0,))
 assert_equal(random.integers(10, 10, size=0).shape, (0,))
 assert_equal(random.choice(0, size=0).shape, (0,))
 assert_equal(random.choice([], size=(0,)).shape, (0,))
 assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
 (3, 0, 4))
 assert_raises(ValueError, random.choice, [], 10)
 
 def test_choice_nan_probabilities(self):
 a = np.array([42, 1, 2])
 p = [None, None, None]
 assert_raises(ValueError, random.choice, a, p=p)
 
 def test_choice_p_non_contiguous(self):
 p = np.ones(10) / 5
 p[1::2] = 3.0
 random = Generator(MT19937(self.seed))
 non_contig = random.choice(5, 3, p=p[::2])
 random = Generator(MT19937(self.seed))
 contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
 assert_array_equal(non_contig, contig)
 
 def test_choice_return_type(self):
 # gh 9867
 p = np.ones(4) / 4.
 actual = random.choice(4, 2)
 assert actual.dtype == np.int64
 actual = random.choice(4, 2, replace=False)
 assert actual.dtype == np.int64
 actual = random.choice(4, 2, p=p)
 assert actual.dtype == np.int64
 actual = random.choice(4, 2, p=p, replace=False)
 assert actual.dtype == np.int64
 
 def test_choice_large_sample(self):
 choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222'
 random = Generator(MT19937(self.seed))
 actual = random.choice(10000, 5000, replace=False)
 if sys.byteorder != 'little':
 actual = actual.byteswap()
 res = hashlib.sha256(actual.view(np.int8)).hexdigest()
 assert_(choice_hash == res)
 
 def test_bytes(self):
 random = Generator(MT19937(self.seed))
 actual = random.bytes(10)
 desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd'
 assert_equal(actual, desired)
 
 def test_shuffle(self):
 # Test lists, arrays (of various dtypes), and multidimensional versions
 # of both, c-contiguous or not:
 for conv in [lambda x: np.array([]),
 lambda x: x,
 lambda x: np.asarray(x).astype(np.int8),
 lambda x: np.asarray(x).astype(np.float32),
 lambda x: np.asarray(x).astype(np.complex64),
 lambda x: np.asarray(x).astype(object),
 lambda x: [(i, i) for i in x],
 lambda x: np.asarray([[i, i] for i in x]),
 lambda x: np.vstack([x, x]).T,
 # gh-11442
 lambda x: (np.asarray([(i, i) for i in x],
 [("a", int), ("b", int)])
 .view(np.recarray)),
 # gh-4270
 lambda x: np.asarray([(i, i) for i in x],
 [("a", object, (1,)),
 ("b", np.int32, (1,))])]:
 random = Generator(MT19937(self.seed))
 alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
 random.shuffle(alist)
 actual = alist
 desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7])
 assert_array_equal(actual, desired)
 
 def test_shuffle_custom_axis(self):
 random = Generator(MT19937(self.seed))
 actual = np.arange(16).reshape((4, 4))
 random.shuffle(actual, axis=1)
 desired = np.array([[ 0,  3,  1,  2],
 [ 4,  7,  5,  6],
 [ 8, 11,  9, 10],
 [12, 15, 13, 14]])
 assert_array_equal(actual, desired)
 random = Generator(MT19937(self.seed))
 actual = np.arange(16).reshape((4, 4))
 random.shuffle(actual, axis=-1)
 assert_array_equal(actual, desired)
 
 def test_shuffle_custom_axis_empty(self):
 random = Generator(MT19937(self.seed))
 desired = np.array([]).reshape((0, 6))
 for axis in (0, 1):
 actual = np.array([]).reshape((0, 6))
 random.shuffle(actual, axis=axis)
 assert_array_equal(actual, desired)
 
 def test_shuffle_axis_nonsquare(self):
 y1 = np.arange(20).reshape(2, 10)
 y2 = y1.copy()
 random = Generator(MT19937(self.seed))
 random.shuffle(y1, axis=1)
 random = Generator(MT19937(self.seed))
 random.shuffle(y2.T)
 assert_array_equal(y1, y2)
 
 def test_shuffle_masked(self):
 # gh-3263
 a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
 b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
 a_orig = a.copy()
 b_orig = b.copy()
 for i in range(50):
 random.shuffle(a)
 assert_equal(
 sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
 random.shuffle(b)
 assert_equal(
 sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
 
 def test_shuffle_exceptions(self):
 random = Generator(MT19937(self.seed))
 arr = np.arange(10)
 assert_raises(np.AxisError, random.shuffle, arr, 1)
 arr = np.arange(9).reshape((3, 3))
 assert_raises(np.AxisError, random.shuffle, arr, 3)
 assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None))
 arr = [[1, 2, 3], [4, 5, 6]]
 assert_raises(NotImplementedError, random.shuffle, arr, 1)
 
 arr = np.array(3)
 assert_raises(TypeError, random.shuffle, arr)
 arr = np.ones((3, 2))
 assert_raises(np.AxisError, random.shuffle, arr, 2)
 
 def test_shuffle_not_writeable(self):
 random = Generator(MT19937(self.seed))
 a = np.zeros(5)
 a.flags.writeable = False
 with pytest.raises(ValueError, match='read-only'):
 random.shuffle(a)
 
 def test_permutation(self):
 random = Generator(MT19937(self.seed))
 alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
 actual = random.permutation(alist)
 desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7]
 assert_array_equal(actual, desired)
 
 random = Generator(MT19937(self.seed))
 arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
 actual = random.permutation(arr_2d)
 assert_array_equal(actual, np.atleast_2d(desired).T)
 
 bad_x_str = "abcd"
 assert_raises(np.AxisError, random.permutation, bad_x_str)
 
 bad_x_float = 1.2
 assert_raises(np.AxisError, random.permutation, bad_x_float)
 
 random = Generator(MT19937(self.seed))
 integer_val = 10
 desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6]
 
 actual = random.permutation(integer_val)
 assert_array_equal(actual, desired)
 
 def test_permutation_custom_axis(self):
 a = np.arange(16).reshape((4, 4))
 desired = np.array([[ 0,  3,  1,  2],
 [ 4,  7,  5,  6],
 [ 8, 11,  9, 10],
 [12, 15, 13, 14]])
 random = Generator(MT19937(self.seed))
 actual = random.permutation(a, axis=1)
 assert_array_equal(actual, desired)
 random = Generator(MT19937(self.seed))
 actual = random.permutation(a, axis=-1)
 assert_array_equal(actual, desired)
 
 def test_permutation_exceptions(self):
 random = Generator(MT19937(self.seed))
 arr = np.arange(10)
 assert_raises(np.AxisError, random.permutation, arr, 1)
 arr = np.arange(9).reshape((3, 3))
 assert_raises(np.AxisError, random.permutation, arr, 3)
 assert_raises(TypeError, random.permutation, arr, slice(1, 2, None))
 
 @pytest.mark.parametrize("dtype", [int, object])
 @pytest.mark.parametrize("axis, expected",
 [(None, np.array([[3, 7, 0, 9, 10, 11],
 [8, 4, 2, 5,  1,  6]])),
 (0, np.array([[6, 1, 2, 9, 10, 11],
 [0, 7, 8, 3,  4,  5]])),
 (1, np.array([[ 5, 3,  4, 0, 2, 1],
 [11, 9, 10, 6, 8, 7]]))])
 def test_permuted(self, dtype, axis, expected):
 random = Generator(MT19937(self.seed))
 x = np.arange(12).reshape(2, 6).astype(dtype)
 random.permuted(x, axis=axis, out=x)
 assert_array_equal(x, expected)
 
 random = Generator(MT19937(self.seed))
 x = np.arange(12).reshape(2, 6).astype(dtype)
 y = random.permuted(x, axis=axis)
 assert y.dtype == dtype
 assert_array_equal(y, expected)
 
 def test_permuted_with_strides(self):
 random = Generator(MT19937(self.seed))
 x0 = np.arange(22).reshape(2, 11)
 x1 = x0.copy()
 x = x0[:, ::3]
 y = random.permuted(x, axis=1, out=x)
 expected = np.array([[0, 9, 3, 6],
 [14, 20, 11, 17]])
 assert_array_equal(y, expected)
 x1[:, ::3] = expected
 # Verify that the original x0 was modified in-place as expected.
 assert_array_equal(x1, x0)
 
 def test_permuted_empty(self):
 y = random.permuted([])
 assert_array_equal(y, [])
 
 @pytest.mark.parametrize('outshape', [(2, 3), 5])
 def test_permuted_out_with_wrong_shape(self, outshape):
 a = np.array([1, 2, 3])
 out = np.zeros(outshape, dtype=a.dtype)
 with pytest.raises(ValueError, match='same shape'):
 random.permuted(a, out=out)
 
 def test_permuted_out_with_wrong_type(self):
 out = np.zeros((3, 5), dtype=np.int32)
 x = np.ones((3, 5))
 with pytest.raises(TypeError, match='Cannot cast'):
 random.permuted(x, axis=1, out=out)
 
 def test_permuted_not_writeable(self):
 x = np.zeros((2, 5))
 x.flags.writeable = False
 with pytest.raises(ValueError, match='read-only'):
 random.permuted(x, axis=1, out=x)
 
 def test_beta(self):
 random = Generator(MT19937(self.seed))
 actual = random.beta(.1, .9, size=(3, 2))
 desired = np.array(
 [[1.083029353267698e-10, 2.449965303168024e-11],
 [2.397085162969853e-02, 3.590779671820755e-08],
 [2.830254190078299e-04, 1.744709918330393e-01]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_binomial(self):
 random = Generator(MT19937(self.seed))
 actual = random.binomial(100.123, .456, size=(3, 2))
 desired = np.array([[42, 41],
 [42, 48],
 [44, 50]])
 assert_array_equal(actual, desired)
 
 random = Generator(MT19937(self.seed))
 actual = random.binomial(100.123, .456)
 desired = 42
 assert_array_equal(actual, desired)
 
 def test_chisquare(self):
 random = Generator(MT19937(self.seed))
 actual = random.chisquare(50, size=(3, 2))
 desired = np.array([[32.9850547060149, 39.0219480493301],
 [56.2006134779419, 57.3474165711485],
 [55.4243733880198, 55.4209797925213]])
 assert_array_almost_equal(actual, desired, decimal=13)
 
 def test_dirichlet(self):
 random = Generator(MT19937(self.seed))
 alpha = np.array([51.72840233779265162, 39.74494232180943953])
 actual = random.dirichlet(alpha, size=(3, 2))
 desired = np.array([[[0.5439892869558927,  0.45601071304410745],
 [0.5588917345860708,  0.4411082654139292 ]],
 [[0.5632074165063435,  0.43679258349365657],
 [0.54862581112627,    0.45137418887373015]],
 [[0.49961831357047226, 0.5003816864295278 ],
 [0.52374806183482,    0.47625193816517997]]])
 assert_array_almost_equal(actual, desired, decimal=15)
 bad_alpha = np.array([5.4e-01, -1.0e-16])
 assert_raises(ValueError, random.dirichlet, bad_alpha)
 
 random = Generator(MT19937(self.seed))
 alpha = np.array([51.72840233779265162, 39.74494232180943953])
 actual = random.dirichlet(alpha)
 assert_array_almost_equal(actual, desired[0, 0], decimal=15)
 
 def test_dirichlet_size(self):
 # gh-3173
 p = np.array([51.72840233779265162, 39.74494232180943953])
 assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
 assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
 assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
 assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
 assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
 assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
 
 assert_raises(TypeError, random.dirichlet, p, float(1))
 
 def test_dirichlet_bad_alpha(self):
 # gh-2089
 alpha = np.array([5.4e-01, -1.0e-16])
 assert_raises(ValueError, random.dirichlet, alpha)
 
 # gh-15876
 assert_raises(ValueError, random.dirichlet, [[5, 1]])
 assert_raises(ValueError, random.dirichlet, [[5], [1]])
 assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
 assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
 
 def test_dirichlet_alpha_non_contiguous(self):
 a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
 alpha = a[::2]
 random = Generator(MT19937(self.seed))
 non_contig = random.dirichlet(alpha, size=(3, 2))
 random = Generator(MT19937(self.seed))
 contig = random.dirichlet(np.ascontiguousarray(alpha),
 size=(3, 2))
 assert_array_almost_equal(non_contig, contig)
 
 def test_dirichlet_small_alpha(self):
 eps = 1.0e-9  # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc.
 alpha = eps * np.array([1., 1.0e-3])
 random = Generator(MT19937(self.seed))
 actual = random.dirichlet(alpha, size=(3, 2))
 expected = np.array([
 [[1., 0.],
 [1., 0.]],
 [[1., 0.],
 [1., 0.]],
 [[1., 0.],
 [1., 0.]]
 ])
 assert_array_almost_equal(actual, expected, decimal=15)
 
 @pytest.mark.slow
 def test_dirichlet_moderately_small_alpha(self):
 # Use alpha.max() < 0.1 to trigger stick breaking code path
 alpha = np.array([0.02, 0.04, 0.03])
 exact_mean = alpha / alpha.sum()
 random = Generator(MT19937(self.seed))
 sample = random.dirichlet(alpha, size=20000000)
 sample_mean = sample.mean(axis=0)
 assert_allclose(sample_mean, exact_mean, rtol=1e-3)
 
 def test_exponential(self):
 random = Generator(MT19937(self.seed))
 actual = random.exponential(1.1234, size=(3, 2))
 desired = np.array([[0.098845481066258, 1.560752510746964],
 [0.075730916041636, 1.769098974710777],
 [1.488602544592235, 2.49684815275751 ]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_exponential_0(self):
 assert_equal(random.exponential(scale=0), 0)
 assert_raises(ValueError, random.exponential, scale=-0.)
 
 def test_f(self):
 random = Generator(MT19937(self.seed))
 actual = random.f(12, 77, size=(3, 2))
 desired = np.array([[0.461720027077085, 1.100441958872451],
 [1.100337455217484, 0.91421736740018 ],
 [0.500811891303113, 0.826802454552058]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_gamma(self):
 random = Generator(MT19937(self.seed))
 actual = random.gamma(5, 3, size=(3, 2))
 desired = np.array([[ 5.03850858902096,  7.9228656732049 ],
 [18.73983605132985, 19.57961681699238],
 [18.17897755150825, 18.17653912505234]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_gamma_0(self):
 assert_equal(random.gamma(shape=0, scale=0), 0)
 assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
 
 def test_geometric(self):
 random = Generator(MT19937(self.seed))
 actual = random.geometric(.123456789, size=(3, 2))
 desired = np.array([[1, 11],
 [1, 12],
 [11, 17]])
 assert_array_equal(actual, desired)
 
 def test_geometric_exceptions(self):
 assert_raises(ValueError, random.geometric, 1.1)
 assert_raises(ValueError, random.geometric, [1.1] * 10)
 assert_raises(ValueError, random.geometric, -0.1)
 assert_raises(ValueError, random.geometric, [-0.1] * 10)
 with np.errstate(invalid='ignore'):
 assert_raises(ValueError, random.geometric, np.nan)
 assert_raises(ValueError, random.geometric, [np.nan] * 10)
 
 def test_gumbel(self):
 random = Generator(MT19937(self.seed))
 actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[ 4.688397515056245, -0.289514845417841],
 [ 4.981176042584683, -0.633224272589149],
 [-0.055915275687488, -0.333962478257953]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_gumbel_0(self):
 assert_equal(random.gumbel(scale=0), 0)
 assert_raises(ValueError, random.gumbel, scale=-0.)
 
 def test_hypergeometric(self):
 random = Generator(MT19937(self.seed))
 actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
 desired = np.array([[ 9, 9],
 [ 9, 9],
 [10, 9]])
 assert_array_equal(actual, desired)
 
 # Test nbad = 0
 actual = random.hypergeometric(5, 0, 3, size=4)
 desired = np.array([3, 3, 3, 3])
 assert_array_equal(actual, desired)
 
 actual = random.hypergeometric(15, 0, 12, size=4)
 desired = np.array([12, 12, 12, 12])
 assert_array_equal(actual, desired)
 
 # Test ngood = 0
 actual = random.hypergeometric(0, 5, 3, size=4)
 desired = np.array([0, 0, 0, 0])
 assert_array_equal(actual, desired)
 
 actual = random.hypergeometric(0, 15, 12, size=4)
 desired = np.array([0, 0, 0, 0])
 assert_array_equal(actual, desired)
 
 def test_laplace(self):
 random = Generator(MT19937(self.seed))
 actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[-3.156353949272393,  1.195863024830054],
 [-3.435458081645966,  1.656882398925444],
 [ 0.924824032467446,  1.251116432209336]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_laplace_0(self):
 assert_equal(random.laplace(scale=0), 0)
 assert_raises(ValueError, random.laplace, scale=-0.)
 
 def test_logistic(self):
 random = Generator(MT19937(self.seed))
 actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[-4.338584631510999,  1.890171436749954],
 [-4.64547787337966 ,  2.514545562919217],
 [ 1.495389489198666,  1.967827627577474]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_lognormal(self):
 random = Generator(MT19937(self.seed))
 actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
 desired = np.array([[ 0.0268252166335, 13.9534486483053],
 [ 0.1204014788936,  2.2422077497792],
 [ 4.2484199496128, 12.0093343977523]])
 assert_array_almost_equal(actual, desired, decimal=13)
 
 def test_lognormal_0(self):
 assert_equal(random.lognormal(sigma=0), 1)
 assert_raises(ValueError, random.lognormal, sigma=-0.)
 
 def test_logseries(self):
 random = Generator(MT19937(self.seed))
 actual = random.logseries(p=.923456789, size=(3, 2))
 desired = np.array([[14, 17],
 [3, 18],
 [5, 1]])
 assert_array_equal(actual, desired)
 
 def test_logseries_zero(self):
 random = Generator(MT19937(self.seed))
 assert random.logseries(0) == 1
 
 @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.])
 def test_logseries_exceptions(self, value):
 random = Generator(MT19937(self.seed))
 with np.errstate(invalid="ignore"):
 with pytest.raises(ValueError):
 random.logseries(value)
 with pytest.raises(ValueError):
 # contiguous path:
 random.logseries(np.array([value] * 10))
 with pytest.raises(ValueError):
 # non-contiguous path:
 random.logseries(np.array([value] * 10)[::2])
 
 def test_multinomial(self):
 random = Generator(MT19937(self.seed))
 actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
 desired = np.array([[[1, 5, 1, 6, 4, 3],
 [4, 2, 6, 2, 4, 2]],
 [[5, 3, 2, 6, 3, 1],
 [4, 4, 0, 2, 3, 7]],
 [[6, 3, 1, 5, 3, 2],
 [5, 5, 3, 1, 2, 4]]])
 assert_array_equal(actual, desired)
 
 @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
 @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
 def test_multivariate_normal(self, method):
 random = Generator(MT19937(self.seed))
 mean = (.123456789, 10)
 cov = [[1, 0], [0, 1]]
 size = (3, 2)
 actual = random.multivariate_normal(mean, cov, size, method=method)
 desired = np.array([[[-1.747478062846581,  11.25613495182354  ],
 [-0.9967333370066214, 10.342002097029821 ]],
 [[ 0.7850019631242964, 11.181113712443013 ],
 [ 0.8901349653255224,  8.873825399642492 ]],
 [[ 0.7130260107430003,  9.551628690083056 ],
 [ 0.7127098726541128, 11.991709234143173 ]]])
 
 assert_array_almost_equal(actual, desired, decimal=15)
 
 # Check for default size, was raising deprecation warning
 actual = random.multivariate_normal(mean, cov, method=method)
 desired = np.array([0.233278563284287, 9.424140804347195])
 assert_array_almost_equal(actual, desired, decimal=15)
 # Check that non symmetric covariance input raises exception when
 # check_valid='raises' if using default svd method.
 mean = [0, 0]
 cov = [[1, 2], [1, 2]]
 assert_raises(ValueError, random.multivariate_normal, mean, cov,
 check_valid='raise')
 
 # Check that non positive-semidefinite covariance warns with
 # RuntimeWarning
 cov = [[1, 2], [2, 1]]
 assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
 assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov,
 method='eigh')
 assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
 method='cholesky')
 
 # and that it doesn't warn with RuntimeWarning check_valid='ignore'
 assert_no_warnings(random.multivariate_normal, mean, cov,
 check_valid='ignore')
 
 # and that it raises with RuntimeWarning check_valid='raises'
 assert_raises(ValueError, random.multivariate_normal, mean, cov,
 check_valid='raise')
 assert_raises(ValueError, random.multivariate_normal, mean, cov,
 check_valid='raise', method='eigh')
 
 # check degenerate samples from singular covariance matrix
 cov = [[1, 1], [1, 1]]
 if method in ('svd', 'eigh'):
 samples = random.multivariate_normal(mean, cov, size=(3, 2),
 method=method)
 assert_array_almost_equal(samples[..., 0], samples[..., 1],
 decimal=6)
 else:
 assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
 method='cholesky')
 
 cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
 with suppress_warnings() as sup:
 random.multivariate_normal(mean, cov, method=method)
 w = sup.record(RuntimeWarning)
 assert len(w) == 0
 
 mu = np.zeros(2)
 cov = np.eye(2)
 assert_raises(ValueError, random.multivariate_normal, mean, cov,
 check_valid='other')
 assert_raises(ValueError, random.multivariate_normal,
 np.zeros((2, 1, 1)), cov)
 assert_raises(ValueError, random.multivariate_normal,
 mu, np.empty((3, 2)))
 assert_raises(ValueError, random.multivariate_normal,
 mu, np.eye(3))
 
 @pytest.mark.parametrize('mean, cov', [([0], [[1+1j]]), ([0j], [[1]])])
 def test_multivariate_normal_disallow_complex(self, mean, cov):
 random = Generator(MT19937(self.seed))
 with pytest.raises(TypeError, match="must not be complex"):
 random.multivariate_normal(mean, cov)
 
 @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
 def test_multivariate_normal_basic_stats(self, method):
 random = Generator(MT19937(self.seed))
 n_s = 1000
 mean = np.array([1, 2])
 cov = np.array([[2, 1], [1, 2]])
 s = random.multivariate_normal(mean, cov, size=(n_s,), method=method)
 s_center = s - mean
 cov_emp = (s_center.T @ s_center) / (n_s - 1)
 # these are pretty loose and are only designed to detect major errors
 assert np.all(np.abs(s_center.mean(-2)) < 0.1)
 assert np.all(np.abs(cov_emp - cov) < 0.2)
 
 def test_negative_binomial(self):
 random = Generator(MT19937(self.seed))
 actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
 desired = np.array([[543, 727],
 [775, 760],
 [600, 674]])
 assert_array_equal(actual, desired)
 
 def test_negative_binomial_exceptions(self):
 with np.errstate(invalid='ignore'):
 assert_raises(ValueError, random.negative_binomial, 100, np.nan)
 assert_raises(ValueError, random.negative_binomial, 100,
 [np.nan] * 10)
 
 def test_negative_binomial_p0_exception(self):
 # Verify that p=0 raises an exception.
 with assert_raises(ValueError):
 x = random.negative_binomial(1, 0)
 
 def test_negative_binomial_invalid_p_n_combination(self):
 # Verify that values of p and n that would result in an overflow
 # or infinite loop raise an exception.
 with np.errstate(invalid='ignore'):
 assert_raises(ValueError, random.negative_binomial, 2**62, 0.1)
 assert_raises(ValueError, random.negative_binomial, [2**62], [0.1])
 
 def test_noncentral_chisquare(self):
 random = Generator(MT19937(self.seed))
 actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
 desired = np.array([[ 1.70561552362133, 15.97378184942111],
 [13.71483425173724, 20.17859633310629],
 [11.3615477156643 ,  3.67891108738029]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
 desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04],
 [1.14554372041263e+00, 1.38187755933435e-03],
 [1.90659181905387e+00, 1.21772577941822e+00]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 random = Generator(MT19937(self.seed))
 actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
 desired = np.array([[0.82947954590419, 1.80139670767078],
 [6.58720057417794, 7.00491463609814],
 [6.31101879073157, 6.30982307753005]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_noncentral_f(self):
 random = Generator(MT19937(self.seed))
 actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
 size=(3, 2))
 desired = np.array([[0.060310671139  , 0.23866058175939],
 [0.86860246709073, 0.2668510459738 ],
 [0.23375780078364, 1.88922102885943]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_noncentral_f_nan(self):
 random = Generator(MT19937(self.seed))
 actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
 assert np.isnan(actual)
 
 def test_normal(self):
 random = Generator(MT19937(self.seed))
 actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[-3.618412914693162,  2.635726692647081],
 [-2.116923463013243,  0.807460983059643],
 [ 1.446547137248593,  2.485684213886024]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_normal_0(self):
 assert_equal(random.normal(scale=0), 0)
 assert_raises(ValueError, random.normal, scale=-0.)
 
 def test_pareto(self):
 random = Generator(MT19937(self.seed))
 actual = random.pareto(a=.123456789, size=(3, 2))
 desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04],
 [7.2640150889064703e-01, 3.4650454783825594e+05],
 [4.5852344481994740e+04, 6.5851383009539105e+07]])
 # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
 # matrix differs by 24 nulps. Discussion:
 #   https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
 # Consensus is that this is probably some gcc quirk that affects
 # rounding but not in any important way, so we just use a looser
 # tolerance on this test:
 np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
 
 def test_poisson(self):
 random = Generator(MT19937(self.seed))
 actual = random.poisson(lam=.123456789, size=(3, 2))
 desired = np.array([[0, 0],
 [0, 0],
 [0, 0]])
 assert_array_equal(actual, desired)
 
 def test_poisson_exceptions(self):
 lambig = np.iinfo('int64').max
 lamneg = -1
 assert_raises(ValueError, random.poisson, lamneg)
 assert_raises(ValueError, random.poisson, [lamneg] * 10)
 assert_raises(ValueError, random.poisson, lambig)
 assert_raises(ValueError, random.poisson, [lambig] * 10)
 with np.errstate(invalid='ignore'):
 assert_raises(ValueError, random.poisson, np.nan)
 assert_raises(ValueError, random.poisson, [np.nan] * 10)
 
 def test_power(self):
 random = Generator(MT19937(self.seed))
 actual = random.power(a=.123456789, size=(3, 2))
 desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02],
 [2.482442984543471e-10, 1.527108843266079e-01],
 [8.188283434244285e-02, 3.950547209346948e-01]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_rayleigh(self):
 random = Generator(MT19937(self.seed))
 actual = random.rayleigh(scale=10, size=(3, 2))
 desired = np.array([[4.19494429102666, 16.66920198906598],
 [3.67184544902662, 17.74695521962917],
 [16.27935397855501, 21.08355560691792]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_rayleigh_0(self):
 assert_equal(random.rayleigh(scale=0), 0)
 assert_raises(ValueError, random.rayleigh, scale=-0.)
 
 def test_standard_cauchy(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_cauchy(size=(3, 2))
 desired = np.array([[-1.489437778266206, -3.275389641569784],
 [ 0.560102864910406, -0.680780916282552],
 [-1.314912905226277,  0.295852965660225]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_standard_exponential(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_exponential(size=(3, 2), method='inv')
 desired = np.array([[0.102031839440643, 1.229350298474972],
 [0.088137284693098, 1.459859985522667],
 [1.093830802293668, 1.256977002164613]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_standard_expoential_type_error(self):
 assert_raises(TypeError, random.standard_exponential, dtype=np.int32)
 
 def test_standard_gamma(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_gamma(shape=3, size=(3, 2))
 desired = np.array([[0.62970724056362, 1.22379851271008],
 [3.899412530884  , 4.12479964250139],
 [3.74994102464584, 3.74929307690815]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_standard_gammma_scalar_float(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_gamma(3, dtype=np.float32)
 desired = 2.9242148399353027
 assert_array_almost_equal(actual, desired, decimal=6)
 
 def test_standard_gamma_float(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_gamma(shape=3, size=(3, 2))
 desired = np.array([[0.62971, 1.2238 ],
 [3.89941, 4.1248 ],
 [3.74994, 3.74929]])
 assert_array_almost_equal(actual, desired, decimal=5)
 
 def test_standard_gammma_float_out(self):
 actual = np.zeros((3, 2), dtype=np.float32)
 random = Generator(MT19937(self.seed))
 random.standard_gamma(10.0, out=actual, dtype=np.float32)
 desired = np.array([[10.14987,  7.87012],
 [ 9.46284, 12.56832],
 [13.82495,  7.81533]], dtype=np.float32)
 assert_array_almost_equal(actual, desired, decimal=5)
 
 random = Generator(MT19937(self.seed))
 random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32)
 assert_array_almost_equal(actual, desired, decimal=5)
 
 def test_standard_gamma_unknown_type(self):
 assert_raises(TypeError, random.standard_gamma, 1.,
 dtype='int32')
 
 def test_out_size_mismatch(self):
 out = np.zeros(10)
 assert_raises(ValueError, random.standard_gamma, 10.0, size=20,
 out=out)
 assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1),
 out=out)
 
 def test_standard_gamma_0(self):
 assert_equal(random.standard_gamma(shape=0), 0)
 assert_raises(ValueError, random.standard_gamma, shape=-0.)
 
 def test_standard_normal(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_normal(size=(3, 2))
 desired = np.array([[-1.870934851846581,  1.25613495182354 ],
 [-1.120190126006621,  0.342002097029821],
 [ 0.661545174124296,  1.181113712443012]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_standard_normal_unsupported_type(self):
 assert_raises(TypeError, random.standard_normal, dtype=np.int32)
 
 def test_standard_t(self):
 random = Generator(MT19937(self.seed))
 actual = random.standard_t(df=10, size=(3, 2))
 desired = np.array([[-1.484666193042647,  0.30597891831161 ],
 [ 1.056684299648085, -0.407312602088507],
 [ 0.130704414281157, -2.038053410490321]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_triangular(self):
 random = Generator(MT19937(self.seed))
 actual = random.triangular(left=5.12, mode=10.23, right=20.34,
 size=(3, 2))
 desired = np.array([[ 7.86664070590917, 13.6313848513185 ],
 [ 7.68152445215983, 14.36169131136546],
 [13.16105603911429, 13.72341621856971]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_uniform(self):
 random = Generator(MT19937(self.seed))
 actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
 desired = np.array([[2.13306255040998 , 7.816987531021207],
 [2.015436610109887, 8.377577533009589],
 [7.421792588856135, 7.891185744455209]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_uniform_range_bounds(self):
 fmin = np.finfo('float').min
 fmax = np.finfo('float').max
 
 func = random.uniform
 assert_raises(OverflowError, func, -np.inf, 0)
 assert_raises(OverflowError, func, 0, np.inf)
 assert_raises(OverflowError, func, fmin, fmax)
 assert_raises(OverflowError, func, [-np.inf], [0])
 assert_raises(OverflowError, func, [0], [np.inf])
 
 # (fmax / 1e17) - fmin is within range, so this should not throw
 # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
 # DBL_MAX by increasing fmin a bit
 random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
 
 def test_uniform_zero_range(self):
 func = random.uniform
 result = func(1.5, 1.5)
 assert_allclose(result, 1.5)
 result = func([0.0, np.pi], [0.0, np.pi])
 assert_allclose(result, [0.0, np.pi])
 result = func([[2145.12], [2145.12]], [2145.12, 2145.12])
 assert_allclose(result, 2145.12 + np.zeros((2, 2)))
 
 def test_uniform_neg_range(self):
 func = random.uniform
 assert_raises(ValueError, func, 2, 1)
 assert_raises(ValueError, func,  [1, 2], [1, 1])
 assert_raises(ValueError, func,  [[0, 1],[2, 3]], 2)
 
 def test_scalar_exception_propagation(self):
 # Tests that exceptions are correctly propagated in distributions
 # when called with objects that throw exceptions when converted to
 # scalars.
 #
 # Regression test for gh: 8865
 
 class ThrowingFloat(np.ndarray):
 def __float__(self):
 raise TypeError
 
 throwing_float = np.array(1.0).view(ThrowingFloat)
 assert_raises(TypeError, random.uniform, throwing_float,
 throwing_float)
 
 class ThrowingInteger(np.ndarray):
 def __int__(self):
 raise TypeError
 
 throwing_int = np.array(1).view(ThrowingInteger)
 assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
 
 def test_vonmises(self):
 random = Generator(MT19937(self.seed))
 actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
 desired = np.array([[ 1.107972248690106,  2.841536476232361],
 [ 1.832602376042457,  1.945511926976032],
 [-0.260147475776542,  2.058047492231698]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_vonmises_small(self):
 # check infinite loop, gh-4720
 random = Generator(MT19937(self.seed))
 r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
 assert_(np.isfinite(r).all())
 
 def test_vonmises_nan(self):
 random = Generator(MT19937(self.seed))
 r = random.vonmises(mu=0., kappa=np.nan)
 assert_(np.isnan(r))
 
 @pytest.mark.parametrize("kappa", [1e4, 1e15])
 def test_vonmises_large_kappa(self, kappa):
 random = Generator(MT19937(self.seed))
 rs = RandomState(random.bit_generator)
 state = random.bit_generator.state
 
 random_state_vals = rs.vonmises(0, kappa, size=10)
 random.bit_generator.state = state
 gen_vals = random.vonmises(0, kappa, size=10)
 if kappa < 1e6:
 assert_allclose(random_state_vals, gen_vals)
 else:
 assert np.all(random_state_vals != gen_vals)
 
 @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2])
 @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15])
 def test_vonmises_large_kappa_range(self, mu, kappa):
 random = Generator(MT19937(self.seed))
 r = random.vonmises(mu, kappa, 50)
 assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
 
 def test_wald(self):
 random = Generator(MT19937(self.seed))
 actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
 desired = np.array([[0.26871721804551, 3.2233942732115 ],
 [2.20328374987066, 2.40958405189353],
 [2.07093587449261, 0.73073890064369]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_weibull(self):
 random = Generator(MT19937(self.seed))
 actual = random.weibull(a=1.23, size=(3, 2))
 desired = np.array([[0.138613914769468, 1.306463419753191],
 [0.111623365934763, 1.446570494646721],
 [1.257145775276011, 1.914247725027957]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_weibull_0(self):
 random = Generator(MT19937(self.seed))
 assert_equal(random.weibull(a=0, size=12), np.zeros(12))
 assert_raises(ValueError, random.weibull, a=-0.)
 
 def test_zipf(self):
 random = Generator(MT19937(self.seed))
 actual = random.zipf(a=1.23, size=(3, 2))
 desired = np.array([[  1,   1],
 [ 10, 867],
 [354,   2]])
 assert_array_equal(actual, desired)
 
 
 class TestBroadcast:
 # tests that functions that broadcast behave
 # correctly when presented with non-scalar arguments
 def setup_method(self):
 self.seed = 123456789
 
 
 def test_uniform(self):
 random = Generator(MT19937(self.seed))
 low = [0]
 high = [1]
 uniform = random.uniform
 desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095])
 
 random = Generator(MT19937(self.seed))
 actual = random.uniform(low * 3, high)
 assert_array_almost_equal(actual, desired, decimal=14)
 
 random = Generator(MT19937(self.seed))
 actual = random.uniform(low, high * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_normal(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 random = Generator(MT19937(self.seed))
 desired = np.array([-0.38736406738527,  0.79594375042255,  0.0197076236097])
 
 random = Generator(MT19937(self.seed))
 actual = random.normal(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.normal, loc * 3, bad_scale)
 
 random = Generator(MT19937(self.seed))
 normal = random.normal
 actual = normal(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, normal, loc, bad_scale * 3)
 
 def test_beta(self):
 a = [1]
 b = [2]
 bad_a = [-1]
 bad_b = [-2]
 desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455])
 
 random = Generator(MT19937(self.seed))
 beta = random.beta
 actual = beta(a * 3, b)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, beta, bad_a * 3, b)
 assert_raises(ValueError, beta, a * 3, bad_b)
 
 random = Generator(MT19937(self.seed))
 actual = random.beta(a, b * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_exponential(self):
 scale = [1]
 bad_scale = [-1]
 desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
 
 random = Generator(MT19937(self.seed))
 actual = random.exponential(scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.exponential, bad_scale * 3)
 
 def test_standard_gamma(self):
 shape = [1]
 bad_shape = [-1]
 desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
 
 random = Generator(MT19937(self.seed))
 std_gamma = random.standard_gamma
 actual = std_gamma(shape * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, std_gamma, bad_shape * 3)
 
 def test_gamma(self):
 shape = [1]
 scale = [2]
 bad_shape = [-1]
 bad_scale = [-2]
 desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258])
 
 random = Generator(MT19937(self.seed))
 gamma = random.gamma
 actual = gamma(shape * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gamma, bad_shape * 3, scale)
 assert_raises(ValueError, gamma, shape * 3, bad_scale)
 
 random = Generator(MT19937(self.seed))
 gamma = random.gamma
 actual = gamma(shape, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gamma, bad_shape, scale * 3)
 assert_raises(ValueError, gamma, shape, bad_scale * 3)
 
 def test_f(self):
 dfnum = [1]
 dfden = [2]
 bad_dfnum = [-1]
 bad_dfden = [-2]
 desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763])
 
 random = Generator(MT19937(self.seed))
 f = random.f
 actual = f(dfnum * 3, dfden)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, f, bad_dfnum * 3, dfden)
 assert_raises(ValueError, f, dfnum * 3, bad_dfden)
 
 random = Generator(MT19937(self.seed))
 f = random.f
 actual = f(dfnum, dfden * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, f, bad_dfnum, dfden * 3)
 assert_raises(ValueError, f, dfnum, bad_dfden * 3)
 
 def test_noncentral_f(self):
 dfnum = [2]
 dfden = [3]
 nonc = [4]
 bad_dfnum = [0]
 bad_dfden = [-1]
 bad_nonc = [-2]
 desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629])
 
 random = Generator(MT19937(self.seed))
 nonc_f = random.noncentral_f
 actual = nonc_f(dfnum * 3, dfden, nonc)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
 
 assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
 assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
 assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
 
 random = Generator(MT19937(self.seed))
 nonc_f = random.noncentral_f
 actual = nonc_f(dfnum, dfden * 3, nonc)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
 assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
 assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
 
 random = Generator(MT19937(self.seed))
 nonc_f = random.noncentral_f
 actual = nonc_f(dfnum, dfden, nonc * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
 assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
 assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
 
 def test_noncentral_f_small_df(self):
 random = Generator(MT19937(self.seed))
 desired = np.array([0.04714867120827, 0.1239390327694])
 actual = random.noncentral_f(0.9, 0.9, 2, size=2)
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_chisquare(self):
 df = [1]
 bad_df = [-1]
 desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589])
 
 random = Generator(MT19937(self.seed))
 actual = random.chisquare(df * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.chisquare, bad_df * 3)
 
 def test_noncentral_chisquare(self):
 df = [1]
 nonc = [2]
 bad_df = [-1]
 bad_nonc = [-2]
 desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399])
 
 random = Generator(MT19937(self.seed))
 nonc_chi = random.noncentral_chisquare
 actual = nonc_chi(df * 3, nonc)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
 assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
 
 random = Generator(MT19937(self.seed))
 nonc_chi = random.noncentral_chisquare
 actual = nonc_chi(df, nonc * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
 assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
 
 def test_standard_t(self):
 df = [1]
 bad_df = [-1]
 desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983])
 
 random = Generator(MT19937(self.seed))
 actual = random.standard_t(df * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.standard_t, bad_df * 3)
 
 def test_vonmises(self):
 mu = [2]
 kappa = [1]
 bad_kappa = [-1]
 desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326])
 
 random = Generator(MT19937(self.seed))
 actual = random.vonmises(mu * 3, kappa)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa)
 
 random = Generator(MT19937(self.seed))
 actual = random.vonmises(mu, kappa * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3)
 
 def test_pareto(self):
 a = [1]
 bad_a = [-1]
 desired = np.array([0.95905052946317, 0.2383810889437 , 1.04988745750013])
 
 random = Generator(MT19937(self.seed))
 actual = random.pareto(a * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.pareto, bad_a * 3)
 
 def test_weibull(self):
 a = [1]
 bad_a = [-1]
 desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
 
 random = Generator(MT19937(self.seed))
 actual = random.weibull(a * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.weibull, bad_a * 3)
 
 def test_power(self):
 a = [1]
 bad_a = [-1]
 desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807])
 
 random = Generator(MT19937(self.seed))
 actual = random.power(a * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.power, bad_a * 3)
 
 def test_laplace(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202])
 
 random = Generator(MT19937(self.seed))
 laplace = random.laplace
 actual = laplace(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, laplace, loc * 3, bad_scale)
 
 random = Generator(MT19937(self.seed))
 laplace = random.laplace
 actual = laplace(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, laplace, loc, bad_scale * 3)
 
 def test_gumbel(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081])
 
 random = Generator(MT19937(self.seed))
 gumbel = random.gumbel
 actual = gumbel(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gumbel, loc * 3, bad_scale)
 
 random = Generator(MT19937(self.seed))
 gumbel = random.gumbel
 actual = gumbel(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gumbel, loc, bad_scale * 3)
 
 def test_logistic(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397])
 
 random = Generator(MT19937(self.seed))
 actual = random.logistic(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.logistic, loc * 3, bad_scale)
 
 random = Generator(MT19937(self.seed))
 actual = random.logistic(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.logistic, loc, bad_scale * 3)
 assert_equal(random.logistic(1.0, 0.0), 1.0)
 
 def test_lognormal(self):
 mean = [0]
 sigma = [1]
 bad_sigma = [-1]
 desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276])
 
 random = Generator(MT19937(self.seed))
 lognormal = random.lognormal
 actual = lognormal(mean * 3, sigma)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
 
 random = Generator(MT19937(self.seed))
 actual = random.lognormal(mean, sigma * 3)
 assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
 
 def test_rayleigh(self):
 scale = [1]
 bad_scale = [-1]
 desired = np.array(
 [1.1597068009872629,
 0.6539188836253857,
 1.1981526554349398]
 )
 
 random = Generator(MT19937(self.seed))
 actual = random.rayleigh(scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.rayleigh, bad_scale * 3)
 
 def test_wald(self):
 mean = [0.5]
 scale = [1]
 bad_mean = [0]
 bad_scale = [-2]
 desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864])
 
 random = Generator(MT19937(self.seed))
 actual = random.wald(mean * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.wald, bad_mean * 3, scale)
 assert_raises(ValueError, random.wald, mean * 3, bad_scale)
 
 random = Generator(MT19937(self.seed))
 actual = random.wald(mean, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, random.wald, bad_mean, scale * 3)
 assert_raises(ValueError, random.wald, mean, bad_scale * 3)
 
 def test_triangular(self):
 left = [1]
 right = [3]
 mode = [2]
 bad_left_one = [3]
 bad_mode_one = [4]
 bad_left_two, bad_mode_two = right * 2
 desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326])
 
 random = Generator(MT19937(self.seed))
 triangular = random.triangular
 actual = triangular(left * 3, mode, right)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
 assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
 assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
 right)
 
 random = Generator(MT19937(self.seed))
 triangular = random.triangular
 actual = triangular(left, mode * 3, right)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
 assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
 assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
 right)
 
 random = Generator(MT19937(self.seed))
 triangular = random.triangular
 actual = triangular(left, mode, right * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
 assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
 assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
 right * 3)
 
 assert_raises(ValueError, triangular, 10., 0., 20.)
 assert_raises(ValueError, triangular, 10., 25., 20.)
 assert_raises(ValueError, triangular, 10., 10., 10.)
 
 def test_binomial(self):
 n = [1]
 p = [0.5]
 bad_n = [-1]
 bad_p_one = [-1]
 bad_p_two = [1.5]
 desired = np.array([0, 0, 1])
 
 random = Generator(MT19937(self.seed))
 binom = random.binomial
 actual = binom(n * 3, p)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, binom, bad_n * 3, p)
 assert_raises(ValueError, binom, n * 3, bad_p_one)
 assert_raises(ValueError, binom, n * 3, bad_p_two)
 
 random = Generator(MT19937(self.seed))
 actual = random.binomial(n, p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, binom, bad_n, p * 3)
 assert_raises(ValueError, binom, n, bad_p_one * 3)
 assert_raises(ValueError, binom, n, bad_p_two * 3)
 
 def test_negative_binomial(self):
 n = [1]
 p = [0.5]
 bad_n = [-1]
 bad_p_one = [-1]
 bad_p_two = [1.5]
 desired = np.array([0, 2, 1], dtype=np.int64)
 
 random = Generator(MT19937(self.seed))
 neg_binom = random.negative_binomial
 actual = neg_binom(n * 3, p)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, neg_binom, bad_n * 3, p)
 assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
 assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
 
 random = Generator(MT19937(self.seed))
 neg_binom = random.negative_binomial
 actual = neg_binom(n, p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, neg_binom, bad_n, p * 3)
 assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
 assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
 
 def test_poisson(self):
 
 lam = [1]
 bad_lam_one = [-1]
 desired = np.array([0, 0, 3])
 
 random = Generator(MT19937(self.seed))
 max_lam = random._poisson_lam_max
 bad_lam_two = [max_lam * 2]
 poisson = random.poisson
 actual = poisson(lam * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, poisson, bad_lam_one * 3)
 assert_raises(ValueError, poisson, bad_lam_two * 3)
 
 def test_zipf(self):
 a = [2]
 bad_a = [0]
 desired = np.array([1, 8, 1])
 
 random = Generator(MT19937(self.seed))
 zipf = random.zipf
 actual = zipf(a * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, zipf, bad_a * 3)
 with np.errstate(invalid='ignore'):
 assert_raises(ValueError, zipf, np.nan)
 assert_raises(ValueError, zipf, [0, 0, np.nan])
 
 def test_geometric(self):
 p = [0.5]
 bad_p_one = [-1]
 bad_p_two = [1.5]
 desired = np.array([1, 1, 3])
 
 random = Generator(MT19937(self.seed))
 geometric = random.geometric
 actual = geometric(p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, geometric, bad_p_one * 3)
 assert_raises(ValueError, geometric, bad_p_two * 3)
 
 def test_hypergeometric(self):
 ngood = [1]
 nbad = [2]
 nsample = [2]
 bad_ngood = [-1]
 bad_nbad = [-2]
 bad_nsample_one = [-1]
 bad_nsample_two = [4]
 desired = np.array([0, 0, 1])
 
 random = Generator(MT19937(self.seed))
 actual = random.hypergeometric(ngood * 3, nbad, nsample)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample)
 assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample)
 assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one)
 assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two)
 
 random = Generator(MT19937(self.seed))
 actual = random.hypergeometric(ngood, nbad * 3, nsample)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample)
 assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample)
 assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one)
 assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two)
 
 random = Generator(MT19937(self.seed))
 hypergeom = random.hypergeometric
 actual = hypergeom(ngood, nbad, nsample * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
 assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
 assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
 assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
 
 assert_raises(ValueError, hypergeom, -1, 10, 20)
 assert_raises(ValueError, hypergeom, 10, -1, 20)
 assert_raises(ValueError, hypergeom, 10, 10, -1)
 assert_raises(ValueError, hypergeom, 10, 10, 25)
 
 # ValueError for arguments that are too big.
 assert_raises(ValueError, hypergeom, 2**30, 10, 20)
 assert_raises(ValueError, hypergeom, 999, 2**31, 50)
 assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000)
 
 def test_logseries(self):
 p = [0.5]
 bad_p_one = [2]
 bad_p_two = [-1]
 desired = np.array([1, 1, 1])
 
 random = Generator(MT19937(self.seed))
 logseries = random.logseries
 actual = logseries(p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, logseries, bad_p_one * 3)
 assert_raises(ValueError, logseries, bad_p_two * 3)
 
 def test_multinomial(self):
 random = Generator(MT19937(self.seed))
 actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2))
 desired = np.array([[[0, 0, 2, 1, 2, 0],
 [2, 3, 6, 4, 2, 3]],
 [[1, 0, 1, 0, 2, 1],
 [7, 2, 2, 1, 4, 4]],
 [[0, 2, 0, 1, 2, 0],
 [3, 2, 3, 3, 4, 5]]], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 random = Generator(MT19937(self.seed))
 actual = random.multinomial([5, 20], [1 / 6.] * 6)
 desired = np.array([[0, 0, 2, 1, 2, 0],
 [2, 3, 6, 4, 2, 3]], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 random = Generator(MT19937(self.seed))
 actual = random.multinomial([5, 20], [[1 / 6.] * 6] * 2)
 desired = np.array([[0, 0, 2, 1, 2, 0],
 [2, 3, 6, 4, 2, 3]], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 random = Generator(MT19937(self.seed))
 actual = random.multinomial([[5], [20]], [[1 / 6.] * 6] * 2)
 desired = np.array([[[0, 0, 2, 1, 2, 0],
 [0, 0, 2, 1, 1, 1]],
 [[4, 2, 3, 3, 5, 3],
 [7, 2, 2, 1, 4, 4]]], dtype=np.int64)
 assert_array_equal(actual, desired)
 
 @pytest.mark.parametrize("n", [10,
 np.array([10, 10]),
 np.array([[[10]], [[10]]])
 ]
 )
 def test_multinomial_pval_broadcast(self, n):
 random = Generator(MT19937(self.seed))
 pvals = np.array([1 / 4] * 4)
 actual = random.multinomial(n, pvals)
 n_shape = tuple() if isinstance(n, int) else n.shape
 expected_shape = n_shape + (4,)
 assert actual.shape == expected_shape
 pvals = np.vstack([pvals, pvals])
 actual = random.multinomial(n, pvals)
 expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + (4,)
 assert actual.shape == expected_shape
 
 pvals = np.vstack([[pvals], [pvals]])
 actual = random.multinomial(n, pvals)
 expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1])
 assert actual.shape == expected_shape + (4,)
 actual = random.multinomial(n, pvals, size=(3, 2) + expected_shape)
 assert actual.shape == (3, 2) + expected_shape + (4,)
 
 with pytest.raises(ValueError):
 # Ensure that size is not broadcast
 actual = random.multinomial(n, pvals, size=(1,) * 6)
 
 def test_invalid_pvals_broadcast(self):
 random = Generator(MT19937(self.seed))
 pvals = [[1 / 6] * 6, [1 / 4] * 6]
 assert_raises(ValueError, random.multinomial, 1, pvals)
 assert_raises(ValueError, random.multinomial, 6, 0.5)
 
 def test_empty_outputs(self):
 random = Generator(MT19937(self.seed))
 actual = random.multinomial(np.empty((10, 0, 6), "i8"), [1 / 6] * 6)
 assert actual.shape == (10, 0, 6, 6)
 actual = random.multinomial(12, np.empty((10, 0, 10)))
 assert actual.shape == (10, 0, 10)
 actual = random.multinomial(np.empty((3, 0, 7), "i8"),
 np.empty((3, 0, 7, 4)))
 assert actual.shape == (3, 0, 7, 4)
 
 
 @pytest.mark.skipif(IS_WASM, reason="can't start thread")
 class TestThread:
 # make sure each state produces the same sequence even in threads
 def setup_method(self):
 self.seeds = range(4)
 
 def check_function(self, function, sz):
 from threading import Thread
 
 out1 = np.empty((len(self.seeds),) + sz)
 out2 = np.empty((len(self.seeds),) + sz)
 
 # threaded generation
 t = [Thread(target=function, args=(Generator(MT19937(s)), o))
 for s, o in zip(self.seeds, out1)]
 [x.start() for x in t]
 [x.join() for x in t]
 
 # the same serial
 for s, o in zip(self.seeds, out2):
 function(Generator(MT19937(s)), o)
 
 # these platforms change x87 fpu precision mode in threads
 if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
 assert_array_almost_equal(out1, out2)
 else:
 assert_array_equal(out1, out2)
 
 def test_normal(self):
 def gen_random(state, out):
 out[...] = state.normal(size=10000)
 
 self.check_function(gen_random, sz=(10000,))
 
 def test_exp(self):
 def gen_random(state, out):
 out[...] = state.exponential(scale=np.ones((100, 1000)))
 
 self.check_function(gen_random, sz=(100, 1000))
 
 def test_multinomial(self):
 def gen_random(state, out):
 out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
 
 self.check_function(gen_random, sz=(10000, 6))
 
 
 # See Issue #4263
 class TestSingleEltArrayInput:
 def setup_method(self):
 self.argOne = np.array([2])
 self.argTwo = np.array([3])
 self.argThree = np.array([4])
 self.tgtShape = (1,)
 
 def test_one_arg_funcs(self):
 funcs = (random.exponential, random.standard_gamma,
 random.chisquare, random.standard_t,
 random.pareto, random.weibull,
 random.power, random.rayleigh,
 random.poisson, random.zipf,
 random.geometric, random.logseries)
 
 probfuncs = (random.geometric, random.logseries)
 
 for func in funcs:
 if func in probfuncs:  # p < 1.0
 out = func(np.array([0.5]))
 
 else:
 out = func(self.argOne)
 
 assert_equal(out.shape, self.tgtShape)
 
 def test_two_arg_funcs(self):
 funcs = (random.uniform, random.normal,
 random.beta, random.gamma,
 random.f, random.noncentral_chisquare,
 random.vonmises, random.laplace,
 random.gumbel, random.logistic,
 random.lognormal, random.wald,
 random.binomial, random.negative_binomial)
 
 probfuncs = (random.binomial, random.negative_binomial)
 
 for func in funcs:
 if func in probfuncs:  # p <= 1
 argTwo = np.array([0.5])
 
 else:
 argTwo = self.argTwo
 
 out = func(self.argOne, argTwo)
 assert_equal(out.shape, self.tgtShape)
 
 out = func(self.argOne[0], argTwo)
 assert_equal(out.shape, self.tgtShape)
 
 out = func(self.argOne, argTwo[0])
 assert_equal(out.shape, self.tgtShape)
 
 def test_integers(self, endpoint):
 itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
 np.int32, np.uint32, np.int64, np.uint64]
 func = random.integers
 high = np.array([1])
 low = np.array([0])
 
 for dt in itype:
 out = func(low, high, endpoint=endpoint, dtype=dt)
 assert_equal(out.shape, self.tgtShape)
 
 out = func(low[0], high, endpoint=endpoint, dtype=dt)
 assert_equal(out.shape, self.tgtShape)
 
 out = func(low, high[0], endpoint=endpoint, dtype=dt)
 assert_equal(out.shape, self.tgtShape)
 
 def test_three_arg_funcs(self):
 funcs = [random.noncentral_f, random.triangular,
 random.hypergeometric]
 
 for func in funcs:
 out = func(self.argOne, self.argTwo, self.argThree)
 assert_equal(out.shape, self.tgtShape)
 
 out = func(self.argOne[0], self.argTwo, self.argThree)
 assert_equal(out.shape, self.tgtShape)
 
 out = func(self.argOne, self.argTwo[0], self.argThree)
 assert_equal(out.shape, self.tgtShape)
 
 
 @pytest.mark.parametrize("config", JUMP_TEST_DATA)
 def test_jumped(config):
 # Each config contains the initial seed, a number of raw steps
 # the sha256 hashes of the initial and the final states' keys and
 # the position of the initial and the final state.
 # These were produced using the original C implementation.
 seed = config["seed"]
 steps = config["steps"]
 
 mt19937 = MT19937(seed)
 # Burn step
 mt19937.random_raw(steps)
 key = mt19937.state["state"]["key"]
 if sys.byteorder == 'big':
 key = key.byteswap()
 sha256 = hashlib.sha256(key)
 assert mt19937.state["state"]["pos"] == config["initial"]["pos"]
 assert sha256.hexdigest() == config["initial"]["key_sha256"]
 
 jumped = mt19937.jumped()
 key = jumped.state["state"]["key"]
 if sys.byteorder == 'big':
 key = key.byteswap()
 sha256 = hashlib.sha256(key)
 assert jumped.state["state"]["pos"] == config["jumped"]["pos"]
 assert sha256.hexdigest() == config["jumped"]["key_sha256"]
 
 
 def test_broadcast_size_error():
 mu = np.ones(3)
 sigma = np.ones((4, 3))
 size = (10, 4, 2)
 assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3)
 with pytest.raises(ValueError):
 random.normal(mu, sigma, size=size)
 with pytest.raises(ValueError):
 random.normal(mu, sigma, size=(1, 3))
 with pytest.raises(ValueError):
 random.normal(mu, sigma, size=(4, 1, 1))
 # 1 arg
 shape = np.ones((4, 3))
 with pytest.raises(ValueError):
 random.standard_gamma(shape, size=size)
 with pytest.raises(ValueError):
 random.standard_gamma(shape, size=(3,))
 with pytest.raises(ValueError):
 random.standard_gamma(shape, size=3)
 # Check out
 out = np.empty(size)
 with pytest.raises(ValueError):
 random.standard_gamma(shape, out=out)
 
 # 2 arg
 with pytest.raises(ValueError):
 random.binomial(1, [0.3, 0.7], size=(2, 1))
 with pytest.raises(ValueError):
 random.binomial([1, 2], 0.3, size=(2, 1))
 with pytest.raises(ValueError):
 random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
 with pytest.raises(ValueError):
 random.multinomial([2, 2], [.3, .7], size=(2, 1))
 
 # 3 arg
 a = random.chisquare(5, size=3)
 b = random.chisquare(5, size=(4, 3))
 c = random.chisquare(5, size=(5, 4, 3))
 assert random.noncentral_f(a, b, c).shape == (5, 4, 3)
 with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"):
 random.noncentral_f(a, b, c, size=(6, 5, 1, 1))
 
 
 def test_broadcast_size_scalar():
 mu = np.ones(3)
 sigma = np.ones(3)
 random.normal(mu, sigma, size=3)
 with pytest.raises(ValueError):
 random.normal(mu, sigma, size=2)
 
 
 def test_ragged_shuffle():
 # GH 18142
 seq = [[], [], 1]
 gen = Generator(MT19937(0))
 assert_no_warnings(gen.shuffle, seq)
 assert seq == [1, [], []]
 
 
 @pytest.mark.parametrize("high", [-2, [-2]])
 @pytest.mark.parametrize("endpoint", [True, False])
 def test_single_arg_integer_exception(high, endpoint):
 # GH 14333
 gen = Generator(MT19937(0))
 msg = 'high < 0' if endpoint else 'high <= 0'
 with pytest.raises(ValueError, match=msg):
 gen.integers(high, endpoint=endpoint)
 msg = 'low > high' if endpoint else 'low >= high'
 with pytest.raises(ValueError, match=msg):
 gen.integers(-1, high, endpoint=endpoint)
 with pytest.raises(ValueError, match=msg):
 gen.integers([-1], high, endpoint=endpoint)
 
 
 @pytest.mark.parametrize("dtype", ["f4", "f8"])
 def test_c_contig_req_out(dtype):
 # GH 18704
 out = np.empty((2, 3), order="F", dtype=dtype)
 shape = [1, 2, 3]
 with pytest.raises(ValueError, match="Supplied output array"):
 random.standard_gamma(shape, out=out, dtype=dtype)
 with pytest.raises(ValueError, match="Supplied output array"):
 random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype)
 
 
 @pytest.mark.parametrize("dtype", ["f4", "f8"])
 @pytest.mark.parametrize("order", ["F", "C"])
 @pytest.mark.parametrize("dist", [random.standard_normal, random.random])
 def test_contig_req_out(dist, order, dtype):
 # GH 18704
 out = np.empty((2, 3), dtype=dtype, order=order)
 variates = dist(out=out, dtype=dtype)
 assert variates is out
 variates = dist(out=out, dtype=dtype, size=out.shape)
 assert variates is out
 
 
 def test_generator_ctor_old_style_pickle():
 rg = np.random.Generator(np.random.PCG64DXSM(0))
 rg.standard_normal(1)
 # Directly call reduce which is used in pickling
 ctor, args, state_a = rg.__reduce__()
 # Simulate unpickling an old pickle that only has the name
 assert args[:1] == ("PCG64DXSM",)
 b = ctor(*args[:1])
 b.bit_generator.state = state_a
 state_b = b.bit_generator.state
 assert state_a == state_b
 
 |