| Viewing file:  test_hermite_e.py (18.47 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
"""Tests for hermite_e module.
 """
 from functools import reduce
 
 import numpy as np
 import numpy.polynomial.hermite_e as herme
 from numpy.polynomial.polynomial import polyval
 from numpy.testing import (
 assert_almost_equal, assert_raises, assert_equal, assert_,
 )
 
 He0 = np.array([1])
 He1 = np.array([0, 1])
 He2 = np.array([-1, 0, 1])
 He3 = np.array([0, -3, 0, 1])
 He4 = np.array([3, 0, -6, 0, 1])
 He5 = np.array([0, 15, 0, -10, 0, 1])
 He6 = np.array([-15, 0, 45, 0, -15, 0, 1])
 He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1])
 He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1])
 He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1])
 
 Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9]
 
 
 def trim(x):
 return herme.hermetrim(x, tol=1e-6)
 
 
 class TestConstants:
 
 def test_hermedomain(self):
 assert_equal(herme.hermedomain, [-1, 1])
 
 def test_hermezero(self):
 assert_equal(herme.hermezero, [0])
 
 def test_hermeone(self):
 assert_equal(herme.hermeone, [1])
 
 def test_hermex(self):
 assert_equal(herme.hermex, [0, 1])
 
 
 class TestArithmetic:
 x = np.linspace(-3, 3, 100)
 
 def test_hermeadd(self):
 for i in range(5):
 for j in range(5):
 msg = f"At i={i}, j={j}"
 tgt = np.zeros(max(i, j) + 1)
 tgt[i] += 1
 tgt[j] += 1
 res = herme.hermeadd([0]*i + [1], [0]*j + [1])
 assert_equal(trim(res), trim(tgt), err_msg=msg)
 
 def test_hermesub(self):
 for i in range(5):
 for j in range(5):
 msg = f"At i={i}, j={j}"
 tgt = np.zeros(max(i, j) + 1)
 tgt[i] += 1
 tgt[j] -= 1
 res = herme.hermesub([0]*i + [1], [0]*j + [1])
 assert_equal(trim(res), trim(tgt), err_msg=msg)
 
 def test_hermemulx(self):
 assert_equal(herme.hermemulx([0]), [0])
 assert_equal(herme.hermemulx([1]), [0, 1])
 for i in range(1, 5):
 ser = [0]*i + [1]
 tgt = [0]*(i - 1) + [i, 0, 1]
 assert_equal(herme.hermemulx(ser), tgt)
 
 def test_hermemul(self):
 # check values of result
 for i in range(5):
 pol1 = [0]*i + [1]
 val1 = herme.hermeval(self.x, pol1)
 for j in range(5):
 msg = f"At i={i}, j={j}"
 pol2 = [0]*j + [1]
 val2 = herme.hermeval(self.x, pol2)
 pol3 = herme.hermemul(pol1, pol2)
 val3 = herme.hermeval(self.x, pol3)
 assert_(len(pol3) == i + j + 1, msg)
 assert_almost_equal(val3, val1*val2, err_msg=msg)
 
 def test_hermediv(self):
 for i in range(5):
 for j in range(5):
 msg = f"At i={i}, j={j}"
 ci = [0]*i + [1]
 cj = [0]*j + [1]
 tgt = herme.hermeadd(ci, cj)
 quo, rem = herme.hermediv(tgt, ci)
 res = herme.hermeadd(herme.hermemul(quo, ci), rem)
 assert_equal(trim(res), trim(tgt), err_msg=msg)
 
 def test_hermepow(self):
 for i in range(5):
 for j in range(5):
 msg = f"At i={i}, j={j}"
 c = np.arange(i + 1)
 tgt = reduce(herme.hermemul, [c]*j, np.array([1]))
 res = herme.hermepow(c, j)
 assert_equal(trim(res), trim(tgt), err_msg=msg)
 
 
 class TestEvaluation:
 # coefficients of 1 + 2*x + 3*x**2
 c1d = np.array([4., 2., 3.])
 c2d = np.einsum('i,j->ij', c1d, c1d)
 c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
 
 # some random values in [-1, 1)
 x = np.random.random((3, 5))*2 - 1
 y = polyval(x, [1., 2., 3.])
 
 def test_hermeval(self):
 #check empty input
 assert_equal(herme.hermeval([], [1]).size, 0)
 
 #check normal input)
 x = np.linspace(-1, 1)
 y = [polyval(x, c) for c in Helist]
 for i in range(10):
 msg = f"At i={i}"
 tgt = y[i]
 res = herme.hermeval(x, [0]*i + [1])
 assert_almost_equal(res, tgt, err_msg=msg)
 
 #check that shape is preserved
 for i in range(3):
 dims = [2]*i
 x = np.zeros(dims)
 assert_equal(herme.hermeval(x, [1]).shape, dims)
 assert_equal(herme.hermeval(x, [1, 0]).shape, dims)
 assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims)
 
 def test_hermeval2d(self):
 x1, x2, x3 = self.x
 y1, y2, y3 = self.y
 
 #test exceptions
 assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d)
 
 #test values
 tgt = y1*y2
 res = herme.hermeval2d(x1, x2, self.c2d)
 assert_almost_equal(res, tgt)
 
 #test shape
 z = np.ones((2, 3))
 res = herme.hermeval2d(z, z, self.c2d)
 assert_(res.shape == (2, 3))
 
 def test_hermeval3d(self):
 x1, x2, x3 = self.x
 y1, y2, y3 = self.y
 
 #test exceptions
 assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d)
 
 #test values
 tgt = y1*y2*y3
 res = herme.hermeval3d(x1, x2, x3, self.c3d)
 assert_almost_equal(res, tgt)
 
 #test shape
 z = np.ones((2, 3))
 res = herme.hermeval3d(z, z, z, self.c3d)
 assert_(res.shape == (2, 3))
 
 def test_hermegrid2d(self):
 x1, x2, x3 = self.x
 y1, y2, y3 = self.y
 
 #test values
 tgt = np.einsum('i,j->ij', y1, y2)
 res = herme.hermegrid2d(x1, x2, self.c2d)
 assert_almost_equal(res, tgt)
 
 #test shape
 z = np.ones((2, 3))
 res = herme.hermegrid2d(z, z, self.c2d)
 assert_(res.shape == (2, 3)*2)
 
 def test_hermegrid3d(self):
 x1, x2, x3 = self.x
 y1, y2, y3 = self.y
 
 #test values
 tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
 res = herme.hermegrid3d(x1, x2, x3, self.c3d)
 assert_almost_equal(res, tgt)
 
 #test shape
 z = np.ones((2, 3))
 res = herme.hermegrid3d(z, z, z, self.c3d)
 assert_(res.shape == (2, 3)*3)
 
 
 class TestIntegral:
 
 def test_hermeint(self):
 # check exceptions
 assert_raises(TypeError, herme.hermeint, [0], .5)
 assert_raises(ValueError, herme.hermeint, [0], -1)
 assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0])
 assert_raises(ValueError, herme.hermeint, [0], lbnd=[0])
 assert_raises(ValueError, herme.hermeint, [0], scl=[0])
 assert_raises(TypeError, herme.hermeint, [0], axis=.5)
 
 # test integration of zero polynomial
 for i in range(2, 5):
 k = [0]*(i - 2) + [1]
 res = herme.hermeint([0], m=i, k=k)
 assert_almost_equal(res, [0, 1])
 
 # check single integration with integration constant
 for i in range(5):
 scl = i + 1
 pol = [0]*i + [1]
 tgt = [i] + [0]*i + [1/scl]
 hermepol = herme.poly2herme(pol)
 hermeint = herme.hermeint(hermepol, m=1, k=[i])
 res = herme.herme2poly(hermeint)
 assert_almost_equal(trim(res), trim(tgt))
 
 # check single integration with integration constant and lbnd
 for i in range(5):
 scl = i + 1
 pol = [0]*i + [1]
 hermepol = herme.poly2herme(pol)
 hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1)
 assert_almost_equal(herme.hermeval(-1, hermeint), i)
 
 # check single integration with integration constant and scaling
 for i in range(5):
 scl = i + 1
 pol = [0]*i + [1]
 tgt = [i] + [0]*i + [2/scl]
 hermepol = herme.poly2herme(pol)
 hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2)
 res = herme.herme2poly(hermeint)
 assert_almost_equal(trim(res), trim(tgt))
 
 # check multiple integrations with default k
 for i in range(5):
 for j in range(2, 5):
 pol = [0]*i + [1]
 tgt = pol[:]
 for k in range(j):
 tgt = herme.hermeint(tgt, m=1)
 res = herme.hermeint(pol, m=j)
 assert_almost_equal(trim(res), trim(tgt))
 
 # check multiple integrations with defined k
 for i in range(5):
 for j in range(2, 5):
 pol = [0]*i + [1]
 tgt = pol[:]
 for k in range(j):
 tgt = herme.hermeint(tgt, m=1, k=[k])
 res = herme.hermeint(pol, m=j, k=list(range(j)))
 assert_almost_equal(trim(res), trim(tgt))
 
 # check multiple integrations with lbnd
 for i in range(5):
 for j in range(2, 5):
 pol = [0]*i + [1]
 tgt = pol[:]
 for k in range(j):
 tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1)
 res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1)
 assert_almost_equal(trim(res), trim(tgt))
 
 # check multiple integrations with scaling
 for i in range(5):
 for j in range(2, 5):
 pol = [0]*i + [1]
 tgt = pol[:]
 for k in range(j):
 tgt = herme.hermeint(tgt, m=1, k=[k], scl=2)
 res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2)
 assert_almost_equal(trim(res), trim(tgt))
 
 def test_hermeint_axis(self):
 # check that axis keyword works
 c2d = np.random.random((3, 4))
 
 tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T
 res = herme.hermeint(c2d, axis=0)
 assert_almost_equal(res, tgt)
 
 tgt = np.vstack([herme.hermeint(c) for c in c2d])
 res = herme.hermeint(c2d, axis=1)
 assert_almost_equal(res, tgt)
 
 tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d])
 res = herme.hermeint(c2d, k=3, axis=1)
 assert_almost_equal(res, tgt)
 
 
 class TestDerivative:
 
 def test_hermeder(self):
 # check exceptions
 assert_raises(TypeError, herme.hermeder, [0], .5)
 assert_raises(ValueError, herme.hermeder, [0], -1)
 
 # check that zeroth derivative does nothing
 for i in range(5):
 tgt = [0]*i + [1]
 res = herme.hermeder(tgt, m=0)
 assert_equal(trim(res), trim(tgt))
 
 # check that derivation is the inverse of integration
 for i in range(5):
 for j in range(2, 5):
 tgt = [0]*i + [1]
 res = herme.hermeder(herme.hermeint(tgt, m=j), m=j)
 assert_almost_equal(trim(res), trim(tgt))
 
 # check derivation with scaling
 for i in range(5):
 for j in range(2, 5):
 tgt = [0]*i + [1]
 res = herme.hermeder(
 herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5)
 assert_almost_equal(trim(res), trim(tgt))
 
 def test_hermeder_axis(self):
 # check that axis keyword works
 c2d = np.random.random((3, 4))
 
 tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T
 res = herme.hermeder(c2d, axis=0)
 assert_almost_equal(res, tgt)
 
 tgt = np.vstack([herme.hermeder(c) for c in c2d])
 res = herme.hermeder(c2d, axis=1)
 assert_almost_equal(res, tgt)
 
 
 class TestVander:
 # some random values in [-1, 1)
 x = np.random.random((3, 5))*2 - 1
 
 def test_hermevander(self):
 # check for 1d x
 x = np.arange(3)
 v = herme.hermevander(x, 3)
 assert_(v.shape == (3, 4))
 for i in range(4):
 coef = [0]*i + [1]
 assert_almost_equal(v[..., i], herme.hermeval(x, coef))
 
 # check for 2d x
 x = np.array([[1, 2], [3, 4], [5, 6]])
 v = herme.hermevander(x, 3)
 assert_(v.shape == (3, 2, 4))
 for i in range(4):
 coef = [0]*i + [1]
 assert_almost_equal(v[..., i], herme.hermeval(x, coef))
 
 def test_hermevander2d(self):
 # also tests hermeval2d for non-square coefficient array
 x1, x2, x3 = self.x
 c = np.random.random((2, 3))
 van = herme.hermevander2d(x1, x2, [1, 2])
 tgt = herme.hermeval2d(x1, x2, c)
 res = np.dot(van, c.flat)
 assert_almost_equal(res, tgt)
 
 # check shape
 van = herme.hermevander2d([x1], [x2], [1, 2])
 assert_(van.shape == (1, 5, 6))
 
 def test_hermevander3d(self):
 # also tests hermeval3d for non-square coefficient array
 x1, x2, x3 = self.x
 c = np.random.random((2, 3, 4))
 van = herme.hermevander3d(x1, x2, x3, [1, 2, 3])
 tgt = herme.hermeval3d(x1, x2, x3, c)
 res = np.dot(van, c.flat)
 assert_almost_equal(res, tgt)
 
 # check shape
 van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3])
 assert_(van.shape == (1, 5, 24))
 
 
 class TestFitting:
 
 def test_hermefit(self):
 def f(x):
 return x*(x - 1)*(x - 2)
 
 def f2(x):
 return x**4 + x**2 + 1
 
 # Test exceptions
 assert_raises(ValueError, herme.hermefit, [1], [1], -1)
 assert_raises(TypeError, herme.hermefit, [[1]], [1], 0)
 assert_raises(TypeError, herme.hermefit, [], [1], 0)
 assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0)
 assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0)
 assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0)
 assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]])
 assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1])
 assert_raises(ValueError, herme.hermefit, [1], [1], [-1,])
 assert_raises(ValueError, herme.hermefit, [1], [1], [2, -1, 6])
 assert_raises(TypeError, herme.hermefit, [1], [1], [])
 
 # Test fit
 x = np.linspace(0, 2)
 y = f(x)
 #
 coef3 = herme.hermefit(x, y, 3)
 assert_equal(len(coef3), 4)
 assert_almost_equal(herme.hermeval(x, coef3), y)
 coef3 = herme.hermefit(x, y, [0, 1, 2, 3])
 assert_equal(len(coef3), 4)
 assert_almost_equal(herme.hermeval(x, coef3), y)
 #
 coef4 = herme.hermefit(x, y, 4)
 assert_equal(len(coef4), 5)
 assert_almost_equal(herme.hermeval(x, coef4), y)
 coef4 = herme.hermefit(x, y, [0, 1, 2, 3, 4])
 assert_equal(len(coef4), 5)
 assert_almost_equal(herme.hermeval(x, coef4), y)
 # check things still work if deg is not in strict increasing
 coef4 = herme.hermefit(x, y, [2, 3, 4, 1, 0])
 assert_equal(len(coef4), 5)
 assert_almost_equal(herme.hermeval(x, coef4), y)
 #
 coef2d = herme.hermefit(x, np.array([y, y]).T, 3)
 assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
 coef2d = herme.hermefit(x, np.array([y, y]).T, [0, 1, 2, 3])
 assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
 # test weighting
 w = np.zeros_like(x)
 yw = y.copy()
 w[1::2] = 1
 y[0::2] = 0
 wcoef3 = herme.hermefit(x, yw, 3, w=w)
 assert_almost_equal(wcoef3, coef3)
 wcoef3 = herme.hermefit(x, yw, [0, 1, 2, 3], w=w)
 assert_almost_equal(wcoef3, coef3)
 #
 wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w)
 assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
 wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
 assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
 # test scaling with complex values x points whose square
 # is zero when summed.
 x = [1, 1j, -1, -1j]
 assert_almost_equal(herme.hermefit(x, x, 1), [0, 1])
 assert_almost_equal(herme.hermefit(x, x, [0, 1]), [0, 1])
 # test fitting only even Legendre polynomials
 x = np.linspace(-1, 1)
 y = f2(x)
 coef1 = herme.hermefit(x, y, 4)
 assert_almost_equal(herme.hermeval(x, coef1), y)
 coef2 = herme.hermefit(x, y, [0, 2, 4])
 assert_almost_equal(herme.hermeval(x, coef2), y)
 assert_almost_equal(coef1, coef2)
 
 
 class TestCompanion:
 
 def test_raises(self):
 assert_raises(ValueError, herme.hermecompanion, [])
 assert_raises(ValueError, herme.hermecompanion, [1])
 
 def test_dimensions(self):
 for i in range(1, 5):
 coef = [0]*i + [1]
 assert_(herme.hermecompanion(coef).shape == (i, i))
 
 def test_linear_root(self):
 assert_(herme.hermecompanion([1, 2])[0, 0] == -.5)
 
 
 class TestGauss:
 
 def test_100(self):
 x, w = herme.hermegauss(100)
 
 # test orthogonality. Note that the results need to be normalized,
 # otherwise the huge values that can arise from fast growing
 # functions like Laguerre can be very confusing.
 v = herme.hermevander(x, 99)
 vv = np.dot(v.T * w, v)
 vd = 1/np.sqrt(vv.diagonal())
 vv = vd[:, None] * vv * vd
 assert_almost_equal(vv, np.eye(100))
 
 # check that the integral of 1 is correct
 tgt = np.sqrt(2*np.pi)
 assert_almost_equal(w.sum(), tgt)
 
 
 class TestMisc:
 
 def test_hermefromroots(self):
 res = herme.hermefromroots([])
 assert_almost_equal(trim(res), [1])
 for i in range(1, 5):
 roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
 pol = herme.hermefromroots(roots)
 res = herme.hermeval(roots, pol)
 tgt = 0
 assert_(len(pol) == i + 1)
 assert_almost_equal(herme.herme2poly(pol)[-1], 1)
 assert_almost_equal(res, tgt)
 
 def test_hermeroots(self):
 assert_almost_equal(herme.hermeroots([1]), [])
 assert_almost_equal(herme.hermeroots([1, 1]), [-1])
 for i in range(2, 5):
 tgt = np.linspace(-1, 1, i)
 res = herme.hermeroots(herme.hermefromroots(tgt))
 assert_almost_equal(trim(res), trim(tgt))
 
 def test_hermetrim(self):
 coef = [2, -1, 1, 0]
 
 # Test exceptions
 assert_raises(ValueError, herme.hermetrim, coef, -1)
 
 # Test results
 assert_equal(herme.hermetrim(coef), coef[:-1])
 assert_equal(herme.hermetrim(coef, 1), coef[:-3])
 assert_equal(herme.hermetrim(coef, 2), [0])
 
 def test_hermeline(self):
 assert_equal(herme.hermeline(3, 4), [3, 4])
 
 def test_herme2poly(self):
 for i in range(10):
 assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i])
 
 def test_poly2herme(self):
 for i in range(10):
 assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1])
 
 def test_weight(self):
 x = np.linspace(-5, 5, 11)
 tgt = np.exp(-.5*x**2)
 res = herme.hermeweight(x)
 assert_almost_equal(res, tgt)
 
 |