| Viewing file:  test_regression.py (5.31 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
""" Test functions for linalg module"""
 import warnings
 
 import numpy as np
 from numpy import linalg, arange, float64, array, dot, transpose
 from numpy.testing import (
 assert_, assert_raises, assert_equal, assert_array_equal,
 assert_array_almost_equal, assert_array_less
 )
 
 
 class TestRegression:
 
 def test_eig_build(self):
 # Ticket #652
 rva = array([1.03221168e+02 + 0.j,
 -1.91843603e+01 + 0.j,
 -6.04004526e-01 + 15.84422474j,
 -6.04004526e-01 - 15.84422474j,
 -1.13692929e+01 + 0.j,
 -6.57612485e-01 + 10.41755503j,
 -6.57612485e-01 - 10.41755503j,
 1.82126812e+01 + 0.j,
 1.06011014e+01 + 0.j,
 7.80732773e+00 + 0.j,
 -7.65390898e-01 + 0.j,
 1.51971555e-15 + 0.j,
 -1.51308713e-15 + 0.j])
 a = arange(13 * 13, dtype=float64)
 a.shape = (13, 13)
 a = a % 17
 va, ve = linalg.eig(a)
 va.sort()
 rva.sort()
 assert_array_almost_equal(va, rva)
 
 def test_eigh_build(self):
 # Ticket 662.
 rvals = [68.60568999, 89.57756725, 106.67185574]
 
 cov = array([[77.70273908,   3.51489954,  15.64602427],
 [3.51489954,  88.97013878,  -1.07431931],
 [15.64602427,  -1.07431931,  98.18223512]])
 
 vals, vecs = linalg.eigh(cov)
 assert_array_almost_equal(vals, rvals)
 
 def test_svd_build(self):
 # Ticket 627.
 a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
 m, n = a.shape
 u, s, vh = linalg.svd(a)
 
 b = dot(transpose(u[:, n:]), a)
 
 assert_array_almost_equal(b, np.zeros((2, 2)))
 
 def test_norm_vector_badarg(self):
 # Regression for #786: Frobenius norm for vectors raises
 # ValueError.
 assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
 
 def test_lapack_endian(self):
 # For bug #1482
 a = array([[5.7998084,  -2.1825367],
 [-2.1825367,   9.85910595]], dtype='>f8')
 b = array(a, dtype='<f8')
 
 ap = linalg.cholesky(a)
 bp = linalg.cholesky(b)
 assert_array_equal(ap, bp)
 
 def test_large_svd_32bit(self):
 # See gh-4442, 64bit would require very large/slow matrices.
 x = np.eye(1000, 66)
 np.linalg.svd(x)
 
 def test_svd_no_uv(self):
 # gh-4733
 for shape in (3, 4), (4, 4), (4, 3):
 for t in float, complex:
 a = np.ones(shape, dtype=t)
 w = linalg.svd(a, compute_uv=False)
 c = np.count_nonzero(np.absolute(w) > 0.5)
 assert_equal(c, 1)
 assert_equal(np.linalg.matrix_rank(a), 1)
 assert_array_less(1, np.linalg.norm(a, ord=2))
 
 def test_norm_object_array(self):
 # gh-7575
 testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
 
 norm = linalg.norm(testvector)
 assert_array_equal(norm, [0, 1])
 assert_(norm.dtype == np.dtype('float64'))
 
 norm = linalg.norm(testvector, ord=1)
 assert_array_equal(norm, [0, 1])
 assert_(norm.dtype != np.dtype('float64'))
 
 norm = linalg.norm(testvector, ord=2)
 assert_array_equal(norm, [0, 1])
 assert_(norm.dtype == np.dtype('float64'))
 
 assert_raises(ValueError, linalg.norm, testvector, ord='fro')
 assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
 assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
 assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
 assert_raises(ValueError, linalg.norm, testvector, ord=0)
 assert_raises(ValueError, linalg.norm, testvector, ord=-1)
 assert_raises(ValueError, linalg.norm, testvector, ord=-2)
 
 testmatrix = np.array([[np.array([0, 1]), 0, 0],
 [0,                0, 0]], dtype=object)
 
 norm = linalg.norm(testmatrix)
 assert_array_equal(norm, [0, 1])
 assert_(norm.dtype == np.dtype('float64'))
 
 norm = linalg.norm(testmatrix, ord='fro')
 assert_array_equal(norm, [0, 1])
 assert_(norm.dtype == np.dtype('float64'))
 
 assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
 assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
 assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
 assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
 assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
 assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
 assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
 assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
 assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
 
 def test_lstsq_complex_larger_rhs(self):
 # gh-9891
 size = 20
 n_rhs = 70
 G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
 u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
 b = G.dot(u)
 # This should work without segmentation fault.
 u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
 # check results just in case
 assert_array_almost_equal(u_lstsq, u)
 
 |