| Viewing file:  test_stride_tricks.py (22.31 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
import numpy as npfrom numpy.core._rational_tests import rational
 from numpy.testing import (
 assert_equal, assert_array_equal, assert_raises, assert_,
 assert_raises_regex, assert_warns,
 )
 from numpy.lib.stride_tricks import (
 as_strided, broadcast_arrays, _broadcast_shape, broadcast_to,
 broadcast_shapes, sliding_window_view,
 )
 import pytest
 
 
 def assert_shapes_correct(input_shapes, expected_shape):
 # Broadcast a list of arrays with the given input shapes and check the
 # common output shape.
 
 inarrays = [np.zeros(s) for s in input_shapes]
 outarrays = broadcast_arrays(*inarrays)
 outshapes = [a.shape for a in outarrays]
 expected = [expected_shape] * len(inarrays)
 assert_equal(outshapes, expected)
 
 
 def assert_incompatible_shapes_raise(input_shapes):
 # Broadcast a list of arrays with the given (incompatible) input shapes
 # and check that they raise a ValueError.
 
 inarrays = [np.zeros(s) for s in input_shapes]
 assert_raises(ValueError, broadcast_arrays, *inarrays)
 
 
 def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False):
 # Broadcast two shapes against each other and check that the data layout
 # is the same as if a ufunc did the broadcasting.
 
 x0 = np.zeros(shape0, dtype=int)
 # Note that multiply.reduce's identity element is 1.0, so when shape1==(),
 # this gives the desired n==1.
 n = int(np.multiply.reduce(shape1))
 x1 = np.arange(n).reshape(shape1)
 if transposed:
 x0 = x0.T
 x1 = x1.T
 if flipped:
 x0 = x0[::-1]
 x1 = x1[::-1]
 # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the
 # result should be exactly the same as the broadcasted view of x1.
 y = x0 + x1
 b0, b1 = broadcast_arrays(x0, x1)
 assert_array_equal(y, b1)
 
 
 def test_same():
 x = np.arange(10)
 y = np.arange(10)
 bx, by = broadcast_arrays(x, y)
 assert_array_equal(x, bx)
 assert_array_equal(y, by)
 
 def test_broadcast_kwargs():
 # ensure that a TypeError is appropriately raised when
 # np.broadcast_arrays() is called with any keyword
 # argument other than 'subok'
 x = np.arange(10)
 y = np.arange(10)
 
 with assert_raises_regex(TypeError, 'got an unexpected keyword'):
 broadcast_arrays(x, y, dtype='float64')
 
 
 def test_one_off():
 x = np.array([[1, 2, 3]])
 y = np.array([[1], [2], [3]])
 bx, by = broadcast_arrays(x, y)
 bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
 by0 = bx0.T
 assert_array_equal(bx0, bx)
 assert_array_equal(by0, by)
 
 
 def test_same_input_shapes():
 # Check that the final shape is just the input shape.
 
 data = [
 (),
 (1,),
 (3,),
 (0, 1),
 (0, 3),
 (1, 0),
 (3, 0),
 (1, 3),
 (3, 1),
 (3, 3),
 ]
 for shape in data:
 input_shapes = [shape]
 # Single input.
 assert_shapes_correct(input_shapes, shape)
 # Double input.
 input_shapes2 = [shape, shape]
 assert_shapes_correct(input_shapes2, shape)
 # Triple input.
 input_shapes3 = [shape, shape, shape]
 assert_shapes_correct(input_shapes3, shape)
 
 
 def test_two_compatible_by_ones_input_shapes():
 # Check that two different input shapes of the same length, but some have
 # ones, broadcast to the correct shape.
 
 data = [
 [[(1,), (3,)], (3,)],
 [[(1, 3), (3, 3)], (3, 3)],
 [[(3, 1), (3, 3)], (3, 3)],
 [[(1, 3), (3, 1)], (3, 3)],
 [[(1, 1), (3, 3)], (3, 3)],
 [[(1, 1), (1, 3)], (1, 3)],
 [[(1, 1), (3, 1)], (3, 1)],
 [[(1, 0), (0, 0)], (0, 0)],
 [[(0, 1), (0, 0)], (0, 0)],
 [[(1, 0), (0, 1)], (0, 0)],
 [[(1, 1), (0, 0)], (0, 0)],
 [[(1, 1), (1, 0)], (1, 0)],
 [[(1, 1), (0, 1)], (0, 1)],
 ]
 for input_shapes, expected_shape in data:
 assert_shapes_correct(input_shapes, expected_shape)
 # Reverse the input shapes since broadcasting should be symmetric.
 assert_shapes_correct(input_shapes[::-1], expected_shape)
 
 
 def test_two_compatible_by_prepending_ones_input_shapes():
 # Check that two different input shapes (of different lengths) broadcast
 # to the correct shape.
 
 data = [
 [[(), (3,)], (3,)],
 [[(3,), (3, 3)], (3, 3)],
 [[(3,), (3, 1)], (3, 3)],
 [[(1,), (3, 3)], (3, 3)],
 [[(), (3, 3)], (3, 3)],
 [[(1, 1), (3,)], (1, 3)],
 [[(1,), (3, 1)], (3, 1)],
 [[(1,), (1, 3)], (1, 3)],
 [[(), (1, 3)], (1, 3)],
 [[(), (3, 1)], (3, 1)],
 [[(), (0,)], (0,)],
 [[(0,), (0, 0)], (0, 0)],
 [[(0,), (0, 1)], (0, 0)],
 [[(1,), (0, 0)], (0, 0)],
 [[(), (0, 0)], (0, 0)],
 [[(1, 1), (0,)], (1, 0)],
 [[(1,), (0, 1)], (0, 1)],
 [[(1,), (1, 0)], (1, 0)],
 [[(), (1, 0)], (1, 0)],
 [[(), (0, 1)], (0, 1)],
 ]
 for input_shapes, expected_shape in data:
 assert_shapes_correct(input_shapes, expected_shape)
 # Reverse the input shapes since broadcasting should be symmetric.
 assert_shapes_correct(input_shapes[::-1], expected_shape)
 
 
 def test_incompatible_shapes_raise_valueerror():
 # Check that a ValueError is raised for incompatible shapes.
 
 data = [
 [(3,), (4,)],
 [(2, 3), (2,)],
 [(3,), (3,), (4,)],
 [(1, 3, 4), (2, 3, 3)],
 ]
 for input_shapes in data:
 assert_incompatible_shapes_raise(input_shapes)
 # Reverse the input shapes since broadcasting should be symmetric.
 assert_incompatible_shapes_raise(input_shapes[::-1])
 
 
 def test_same_as_ufunc():
 # Check that the data layout is the same as if a ufunc did the operation.
 
 data = [
 [[(1,), (3,)], (3,)],
 [[(1, 3), (3, 3)], (3, 3)],
 [[(3, 1), (3, 3)], (3, 3)],
 [[(1, 3), (3, 1)], (3, 3)],
 [[(1, 1), (3, 3)], (3, 3)],
 [[(1, 1), (1, 3)], (1, 3)],
 [[(1, 1), (3, 1)], (3, 1)],
 [[(1, 0), (0, 0)], (0, 0)],
 [[(0, 1), (0, 0)], (0, 0)],
 [[(1, 0), (0, 1)], (0, 0)],
 [[(1, 1), (0, 0)], (0, 0)],
 [[(1, 1), (1, 0)], (1, 0)],
 [[(1, 1), (0, 1)], (0, 1)],
 [[(), (3,)], (3,)],
 [[(3,), (3, 3)], (3, 3)],
 [[(3,), (3, 1)], (3, 3)],
 [[(1,), (3, 3)], (3, 3)],
 [[(), (3, 3)], (3, 3)],
 [[(1, 1), (3,)], (1, 3)],
 [[(1,), (3, 1)], (3, 1)],
 [[(1,), (1, 3)], (1, 3)],
 [[(), (1, 3)], (1, 3)],
 [[(), (3, 1)], (3, 1)],
 [[(), (0,)], (0,)],
 [[(0,), (0, 0)], (0, 0)],
 [[(0,), (0, 1)], (0, 0)],
 [[(1,), (0, 0)], (0, 0)],
 [[(), (0, 0)], (0, 0)],
 [[(1, 1), (0,)], (1, 0)],
 [[(1,), (0, 1)], (0, 1)],
 [[(1,), (1, 0)], (1, 0)],
 [[(), (1, 0)], (1, 0)],
 [[(), (0, 1)], (0, 1)],
 ]
 for input_shapes, expected_shape in data:
 assert_same_as_ufunc(input_shapes[0], input_shapes[1],
 "Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
 # Reverse the input shapes since broadcasting should be symmetric.
 assert_same_as_ufunc(input_shapes[1], input_shapes[0])
 # Try them transposed, too.
 assert_same_as_ufunc(input_shapes[0], input_shapes[1], True)
 # ... and flipped for non-rank-0 inputs in order to test negative
 # strides.
 if () not in input_shapes:
 assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True)
 assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True)
 
 
 def test_broadcast_to_succeeds():
 data = [
 [np.array(0), (0,), np.array(0)],
 [np.array(0), (1,), np.zeros(1)],
 [np.array(0), (3,), np.zeros(3)],
 [np.ones(1), (1,), np.ones(1)],
 [np.ones(1), (2,), np.ones(2)],
 [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
 [np.arange(3), (3,), np.arange(3)],
 [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)],
 [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])],
 # test if shape is not a tuple
 [np.ones(0), 0, np.ones(0)],
 [np.ones(1), 1, np.ones(1)],
 [np.ones(1), 2, np.ones(2)],
 # these cases with size 0 are strange, but they reproduce the behavior
 # of broadcasting with ufuncs (see test_same_as_ufunc above)
 [np.ones(1), (0,), np.ones(0)],
 [np.ones((1, 2)), (0, 2), np.ones((0, 2))],
 [np.ones((2, 1)), (2, 0), np.ones((2, 0))],
 ]
 for input_array, shape, expected in data:
 actual = broadcast_to(input_array, shape)
 assert_array_equal(expected, actual)
 
 
 def test_broadcast_to_raises():
 data = [
 [(0,), ()],
 [(1,), ()],
 [(3,), ()],
 [(3,), (1,)],
 [(3,), (2,)],
 [(3,), (4,)],
 [(1, 2), (2, 1)],
 [(1, 1), (1,)],
 [(1,), -1],
 [(1,), (-1,)],
 [(1, 2), (-1, 2)],
 ]
 for orig_shape, target_shape in data:
 arr = np.zeros(orig_shape)
 assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))
 
 
 def test_broadcast_shape():
 # tests internal _broadcast_shape
 # _broadcast_shape is already exercised indirectly by broadcast_arrays
 # _broadcast_shape is also exercised by the public broadcast_shapes function
 assert_equal(_broadcast_shape(), ())
 assert_equal(_broadcast_shape([1, 2]), (2,))
 assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1))
 assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4))
 assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2))
 assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2))
 
 # regression tests for gh-5862
 assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,))
 bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32
 assert_raises(ValueError, lambda: _broadcast_shape(*bad_args))
 
 
 def test_broadcast_shapes_succeeds():
 # tests public broadcast_shapes
 data = [
 [[], ()],
 [[()], ()],
 [[(7,)], (7,)],
 [[(1, 2), (2,)], (1, 2)],
 [[(1, 1)], (1, 1)],
 [[(1, 1), (3, 4)], (3, 4)],
 [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)],
 [[(5, 6, 1)], (5, 6, 1)],
 [[(1, 3), (3, 1)], (3, 3)],
 [[(1, 0), (0, 0)], (0, 0)],
 [[(0, 1), (0, 0)], (0, 0)],
 [[(1, 0), (0, 1)], (0, 0)],
 [[(1, 1), (0, 0)], (0, 0)],
 [[(1, 1), (1, 0)], (1, 0)],
 [[(1, 1), (0, 1)], (0, 1)],
 [[(), (0,)], (0,)],
 [[(0,), (0, 0)], (0, 0)],
 [[(0,), (0, 1)], (0, 0)],
 [[(1,), (0, 0)], (0, 0)],
 [[(), (0, 0)], (0, 0)],
 [[(1, 1), (0,)], (1, 0)],
 [[(1,), (0, 1)], (0, 1)],
 [[(1,), (1, 0)], (1, 0)],
 [[(), (1, 0)], (1, 0)],
 [[(), (0, 1)], (0, 1)],
 [[(1,), (3,)], (3,)],
 [[2, (3, 2)], (3, 2)],
 ]
 for input_shapes, target_shape in data:
 assert_equal(broadcast_shapes(*input_shapes), target_shape)
 
 assert_equal(broadcast_shapes(*([(1, 2)] * 32)), (1, 2))
 assert_equal(broadcast_shapes(*([(1, 2)] * 100)), (1, 2))
 
 # regression tests for gh-5862
 assert_equal(broadcast_shapes(*([(2,)] * 32)), (2,))
 
 
 def test_broadcast_shapes_raises():
 # tests public broadcast_shapes
 data = [
 [(3,), (4,)],
 [(2, 3), (2,)],
 [(3,), (3,), (4,)],
 [(1, 3, 4), (2, 3, 3)],
 [(1, 2), (3,1), (3,2), (10, 5)],
 [2, (2, 3)],
 ]
 for input_shapes in data:
 assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes))
 
 bad_args = [(2,)] * 32 + [(3,)] * 32
 assert_raises(ValueError, lambda: broadcast_shapes(*bad_args))
 
 
 def test_as_strided():
 a = np.array([None])
 a_view = as_strided(a)
 expected = np.array([None])
 assert_array_equal(a_view, np.array([None]))
 
 a = np.array([1, 2, 3, 4])
 a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
 expected = np.array([1, 3])
 assert_array_equal(a_view, expected)
 
 a = np.array([1, 2, 3, 4])
 a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize))
 expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
 assert_array_equal(a_view, expected)
 
 # Regression test for gh-5081
 dt = np.dtype([('num', 'i4'), ('obj', 'O')])
 a = np.empty((4,), dtype=dt)
 a['num'] = np.arange(1, 5)
 a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
 expected_num = [[1, 2, 3, 4]] * 3
 expected_obj = [[None]*4]*3
 assert_equal(a_view.dtype, dt)
 assert_array_equal(expected_num, a_view['num'])
 assert_array_equal(expected_obj, a_view['obj'])
 
 # Make sure that void types without fields are kept unchanged
 a = np.empty((4,), dtype='V4')
 a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
 assert_equal(a.dtype, a_view.dtype)
 
 # Make sure that the only type that could fail is properly handled
 dt = np.dtype({'names': [''], 'formats': ['V4']})
 a = np.empty((4,), dtype=dt)
 a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
 assert_equal(a.dtype, a_view.dtype)
 
 # Custom dtypes should not be lost (gh-9161)
 r = [rational(i) for i in range(4)]
 a = np.array(r, dtype=rational)
 a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
 assert_equal(a.dtype, a_view.dtype)
 assert_array_equal([r] * 3, a_view)
 
 
 class TestSlidingWindowView:
 def test_1d(self):
 arr = np.arange(5)
 arr_view = sliding_window_view(arr, 2)
 expected = np.array([[0, 1],
 [1, 2],
 [2, 3],
 [3, 4]])
 assert_array_equal(arr_view, expected)
 
 def test_2d(self):
 i, j = np.ogrid[:3, :4]
 arr = 10*i + j
 shape = (2, 2)
 arr_view = sliding_window_view(arr, shape)
 expected = np.array([[[[0, 1], [10, 11]],
 [[1, 2], [11, 12]],
 [[2, 3], [12, 13]]],
 [[[10, 11], [20, 21]],
 [[11, 12], [21, 22]],
 [[12, 13], [22, 23]]]])
 assert_array_equal(arr_view, expected)
 
 def test_2d_with_axis(self):
 i, j = np.ogrid[:3, :4]
 arr = 10*i + j
 arr_view = sliding_window_view(arr, 3, 0)
 expected = np.array([[[0, 10, 20],
 [1, 11, 21],
 [2, 12, 22],
 [3, 13, 23]]])
 assert_array_equal(arr_view, expected)
 
 def test_2d_repeated_axis(self):
 i, j = np.ogrid[:3, :4]
 arr = 10*i + j
 arr_view = sliding_window_view(arr, (2, 3), (1, 1))
 expected = np.array([[[[0, 1, 2],
 [1, 2, 3]]],
 [[[10, 11, 12],
 [11, 12, 13]]],
 [[[20, 21, 22],
 [21, 22, 23]]]])
 assert_array_equal(arr_view, expected)
 
 def test_2d_without_axis(self):
 i, j = np.ogrid[:4, :4]
 arr = 10*i + j
 shape = (2, 3)
 arr_view = sliding_window_view(arr, shape)
 expected = np.array([[[[0, 1, 2], [10, 11, 12]],
 [[1, 2, 3], [11, 12, 13]]],
 [[[10, 11, 12], [20, 21, 22]],
 [[11, 12, 13], [21, 22, 23]]],
 [[[20, 21, 22], [30, 31, 32]],
 [[21, 22, 23], [31, 32, 33]]]])
 assert_array_equal(arr_view, expected)
 
 def test_errors(self):
 i, j = np.ogrid[:4, :4]
 arr = 10*i + j
 with pytest.raises(ValueError, match='cannot contain negative values'):
 sliding_window_view(arr, (-1, 3))
 with pytest.raises(
 ValueError,
 match='must provide window_shape for all dimensions of `x`'):
 sliding_window_view(arr, (1,))
 with pytest.raises(
 ValueError,
 match='Must provide matching length window_shape and axis'):
 sliding_window_view(arr, (1, 3, 4), axis=(0, 1))
 with pytest.raises(
 ValueError,
 match='window shape cannot be larger than input array'):
 sliding_window_view(arr, (5, 5))
 
 def test_writeable(self):
 arr = np.arange(5)
 view = sliding_window_view(arr, 2, writeable=False)
 assert_(not view.flags.writeable)
 with pytest.raises(
 ValueError,
 match='assignment destination is read-only'):
 view[0, 0] = 3
 view = sliding_window_view(arr, 2, writeable=True)
 assert_(view.flags.writeable)
 view[0, 1] = 3
 assert_array_equal(arr, np.array([0, 3, 2, 3, 4]))
 
 def test_subok(self):
 class MyArray(np.ndarray):
 pass
 
 arr = np.arange(5).view(MyArray)
 assert_(not isinstance(sliding_window_view(arr, 2,
 subok=False),
 MyArray))
 assert_(isinstance(sliding_window_view(arr, 2, subok=True), MyArray))
 # Default behavior
 assert_(not isinstance(sliding_window_view(arr, 2), MyArray))
 
 
 def as_strided_writeable():
 arr = np.ones(10)
 view = as_strided(arr, writeable=False)
 assert_(not view.flags.writeable)
 
 # Check that writeable also is fine:
 view = as_strided(arr, writeable=True)
 assert_(view.flags.writeable)
 view[...] = 3
 assert_array_equal(arr, np.full_like(arr, 3))
 
 # Test that things do not break down for readonly:
 arr.flags.writeable = False
 view = as_strided(arr, writeable=False)
 view = as_strided(arr, writeable=True)
 assert_(not view.flags.writeable)
 
 
 class VerySimpleSubClass(np.ndarray):
 def __new__(cls, *args, **kwargs):
 return np.array(*args, subok=True, **kwargs).view(cls)
 
 
 class SimpleSubClass(VerySimpleSubClass):
 def __new__(cls, *args, **kwargs):
 self = np.array(*args, subok=True, **kwargs).view(cls)
 self.info = 'simple'
 return self
 
 def __array_finalize__(self, obj):
 self.info = getattr(obj, 'info', '') + ' finalized'
 
 
 def test_subclasses():
 # test that subclass is preserved only if subok=True
 a = VerySimpleSubClass([1, 2, 3, 4])
 assert_(type(a) is VerySimpleSubClass)
 a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
 assert_(type(a_view) is np.ndarray)
 a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
 assert_(type(a_view) is VerySimpleSubClass)
 # test that if a subclass has __array_finalize__, it is used
 a = SimpleSubClass([1, 2, 3, 4])
 a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
 assert_(type(a_view) is SimpleSubClass)
 assert_(a_view.info == 'simple finalized')
 
 # similar tests for broadcast_arrays
 b = np.arange(len(a)).reshape(-1, 1)
 a_view, b_view = broadcast_arrays(a, b)
 assert_(type(a_view) is np.ndarray)
 assert_(type(b_view) is np.ndarray)
 assert_(a_view.shape == b_view.shape)
 a_view, b_view = broadcast_arrays(a, b, subok=True)
 assert_(type(a_view) is SimpleSubClass)
 assert_(a_view.info == 'simple finalized')
 assert_(type(b_view) is np.ndarray)
 assert_(a_view.shape == b_view.shape)
 
 # and for broadcast_to
 shape = (2, 4)
 a_view = broadcast_to(a, shape)
 assert_(type(a_view) is np.ndarray)
 assert_(a_view.shape == shape)
 a_view = broadcast_to(a, shape, subok=True)
 assert_(type(a_view) is SimpleSubClass)
 assert_(a_view.info == 'simple finalized')
 assert_(a_view.shape == shape)
 
 
 def test_writeable():
 # broadcast_to should return a readonly array
 original = np.array([1, 2, 3])
 result = broadcast_to(original, (2, 3))
 assert_equal(result.flags.writeable, False)
 assert_raises(ValueError, result.__setitem__, slice(None), 0)
 
 # but the result of broadcast_arrays needs to be writeable, to
 # preserve backwards compatibility
 for is_broadcast, results in [(False, broadcast_arrays(original,)),
 (True, broadcast_arrays(0, original))]:
 for result in results:
 # This will change to False in a future version
 if is_broadcast:
 with assert_warns(FutureWarning):
 assert_equal(result.flags.writeable, True)
 with assert_warns(DeprecationWarning):
 result[:] = 0
 # Warning not emitted, writing to the array resets it
 assert_equal(result.flags.writeable, True)
 else:
 # No warning:
 assert_equal(result.flags.writeable, True)
 
 for results in [broadcast_arrays(original),
 broadcast_arrays(0, original)]:
 for result in results:
 # resets the warn_on_write DeprecationWarning
 result.flags.writeable = True
 # check: no warning emitted
 assert_equal(result.flags.writeable, True)
 result[:] = 0
 
 # keep readonly input readonly
 original.flags.writeable = False
 _, result = broadcast_arrays(0, original)
 assert_equal(result.flags.writeable, False)
 
 # regression test for GH6491
 shape = (2,)
 strides = [0]
 tricky_array = as_strided(np.array(0), shape, strides)
 other = np.zeros((1,))
 first, second = broadcast_arrays(tricky_array, other)
 assert_(first.shape == second.shape)
 
 
 def test_writeable_memoryview():
 # The result of broadcast_arrays exports as a non-writeable memoryview
 # because otherwise there is no good way to opt in to the new behaviour
 # (i.e. you would need to set writeable to False explicitly).
 # See gh-13929.
 original = np.array([1, 2, 3])
 
 for is_broadcast, results in [(False, broadcast_arrays(original,)),
 (True, broadcast_arrays(0, original))]:
 for result in results:
 # This will change to False in a future version
 if is_broadcast:
 # memoryview(result, writable=True) will give warning but cannot
 # be tested using the python API.
 assert memoryview(result).readonly
 else:
 assert not memoryview(result).readonly
 
 
 def test_reference_types():
 input_array = np.array('a', dtype=object)
 expected = np.array(['a'] * 3, dtype=object)
 actual = broadcast_to(input_array, (3,))
 assert_array_equal(expected, actual)
 
 actual, _ = broadcast_arrays(input_array, np.ones(3))
 assert_array_equal(expected, actual)
 
 |