| Viewing file:  test_polynomial.py (11.13 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
import numpy as npfrom numpy.testing import (
 assert_, assert_equal, assert_array_equal, assert_almost_equal,
 assert_array_almost_equal, assert_raises, assert_allclose
 )
 
 import pytest
 
 # `poly1d` has some support for `bool_` and `timedelta64`,
 # but it is limited and they are therefore excluded here
 TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O"
 
 
 class TestPolynomial:
 def test_poly1d_str_and_repr(self):
 p = np.poly1d([1., 2, 3])
 assert_equal(repr(p), 'poly1d([1., 2., 3.])')
 assert_equal(str(p),
 '   2\n'
 '1 x + 2 x + 3')
 
 q = np.poly1d([3., 2, 1])
 assert_equal(repr(q), 'poly1d([3., 2., 1.])')
 assert_equal(str(q),
 '   2\n'
 '3 x + 2 x + 1')
 
 r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j])
 assert_equal(str(r),
 '            3      2\n'
 '(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)')
 
 assert_equal(str(np.poly1d([-3, -2, -1])),
 '    2\n'
 '-3 x - 2 x - 1')
 
 def test_poly1d_resolution(self):
 p = np.poly1d([1., 2, 3])
 q = np.poly1d([3., 2, 1])
 assert_equal(p(0), 3.0)
 assert_equal(p(5), 38.0)
 assert_equal(q(0), 1.0)
 assert_equal(q(5), 86.0)
 
 def test_poly1d_math(self):
 # here we use some simple coeffs to make calculations easier
 p = np.poly1d([1., 2, 4])
 q = np.poly1d([4., 2, 1])
 assert_equal(p/q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75])))
 assert_equal(p.integ(), np.poly1d([1/3, 1., 4., 0.]))
 assert_equal(p.integ(1), np.poly1d([1/3, 1., 4., 0.]))
 
 p = np.poly1d([1., 2, 3])
 q = np.poly1d([3., 2, 1])
 assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.]))
 assert_equal(p + q, np.poly1d([4., 4., 4.]))
 assert_equal(p - q, np.poly1d([-2., 0., 2.]))
 assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.]))
 assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.]))
 assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.]))
 assert_equal(p.deriv(), np.poly1d([2., 2.]))
 assert_equal(p.deriv(2), np.poly1d([2.]))
 assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])),
 (np.poly1d([1., -1.]), np.poly1d([0.])))
 
 @pytest.mark.parametrize("type_code", TYPE_CODES)
 def test_poly1d_misc(self, type_code: str) -> None:
 dtype = np.dtype(type_code)
 ar = np.array([1, 2, 3], dtype=dtype)
 p = np.poly1d(ar)
 
 # `__eq__`
 assert_equal(np.asarray(p), ar)
 assert_equal(np.asarray(p).dtype, dtype)
 assert_equal(len(p), 2)
 
 # `__getitem__`
 comparison_dct = {-1: 0, 0: 3, 1: 2, 2: 1, 3: 0}
 for index, ref in comparison_dct.items():
 scalar = p[index]
 assert_equal(scalar, ref)
 if dtype == np.object_:
 assert isinstance(scalar, int)
 else:
 assert_equal(scalar.dtype, dtype)
 
 def test_poly1d_variable_arg(self):
 q = np.poly1d([1., 2, 3], variable='y')
 assert_equal(str(q),
 '   2\n'
 '1 y + 2 y + 3')
 q = np.poly1d([1., 2, 3], variable='lambda')
 assert_equal(str(q),
 '        2\n'
 '1 lambda + 2 lambda + 3')
 
 def test_poly(self):
 assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
 [1, -3, -2, 6])
 
 # From matlab docs
 A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
 assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])
 
 # Should produce real output for perfect conjugates
 assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
 assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
 1-2j, 1.+3.5j, 1-3.5j])))
 assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
 assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
 assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
 assert_(np.isrealobj(np.poly([1j, -1j])))
 assert_(np.isrealobj(np.poly([1, -1])))
 
 assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
 
 np.random.seed(42)
 a = np.random.randn(100) + 1j*np.random.randn(100)
 assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
 
 def test_roots(self):
 assert_array_equal(np.roots([1, 0, 0]), [0, 0])
 
 def test_str_leading_zeros(self):
 p = np.poly1d([4, 3, 2, 1])
 p[3] = 0
 assert_equal(str(p),
 "   2\n"
 "3 x + 2 x + 1")
 
 p = np.poly1d([1, 2])
 p[0] = 0
 p[1] = 0
 assert_equal(str(p), " \n0")
 
 def test_polyfit(self):
 c = np.array([3., 2., 1.])
 x = np.linspace(0, 2, 7)
 y = np.polyval(c, x)
 err = [1, -1, 1, -1, 1, -1, 1]
 weights = np.arange(8, 1, -1)**2/7.0
 
 # Check exception when too few points for variance estimate. Note that
 # the estimate requires the number of data points to exceed
 # degree + 1
 assert_raises(ValueError, np.polyfit,
 [1], [1], deg=0, cov=True)
 
 # check 1D case
 m, cov = np.polyfit(x, y+err, 2, cov=True)
 est = [3.8571, 0.2857, 1.619]
 assert_almost_equal(est, m, decimal=4)
 val0 = [[ 1.4694, -2.9388,  0.8163],
 [-2.9388,  6.3673, -2.1224],
 [ 0.8163, -2.1224,  1.161 ]]
 assert_almost_equal(val0, cov, decimal=4)
 
 m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True)
 assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4)
 val = [[ 4.3964, -5.0052,  0.4878],
 [-5.0052,  6.8067, -0.9089],
 [ 0.4878, -0.9089,  0.3337]]
 assert_almost_equal(val, cov2, decimal=4)
 
 m3, cov3 = np.polyfit(x, y+err, 2, w=weights, cov="unscaled")
 assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4)
 val = [[ 0.1473, -0.1677,  0.0163],
 [-0.1677,  0.228 , -0.0304],
 [ 0.0163, -0.0304,  0.0112]]
 assert_almost_equal(val, cov3, decimal=4)
 
 # check 2D (n,1) case
 y = y[:, np.newaxis]
 c = c[:, np.newaxis]
 assert_almost_equal(c, np.polyfit(x, y, 2))
 # check 2D (n,2) case
 yy = np.concatenate((y, y), axis=1)
 cc = np.concatenate((c, c), axis=1)
 assert_almost_equal(cc, np.polyfit(x, yy, 2))
 
 m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True)
 assert_almost_equal(est, m[:, 0], decimal=4)
 assert_almost_equal(est, m[:, 1], decimal=4)
 assert_almost_equal(val0, cov[:, :, 0], decimal=4)
 assert_almost_equal(val0, cov[:, :, 1], decimal=4)
 
 # check order 1 (deg=0) case, were the analytic results are simple
 np.random.seed(123)
 y = np.random.normal(size=(4, 10000))
 mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
 # Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
 assert_allclose(mean.std(), 0.5, atol=0.01)
 assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
 # Without scaling, since reduced chi2 is 1, the result should be the same.
 mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]),
 deg=0, cov="unscaled")
 assert_allclose(mean.std(), 0.5, atol=0.01)
 assert_almost_equal(np.sqrt(cov.mean()), 0.5)
 # If we estimate our errors wrong, no change with scaling:
 w = np.full(y.shape[0], 1./0.5)
 mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True)
 assert_allclose(mean.std(), 0.5, atol=0.01)
 assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
 # But if we do not scale, our estimate for the error in the mean will
 # differ.
 mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled")
 assert_allclose(mean.std(), 0.5, atol=0.01)
 assert_almost_equal(np.sqrt(cov.mean()), 0.25)
 
 def test_objects(self):
 from decimal import Decimal
 p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
 p2 = p * Decimal('1.333333333333333')
 assert_(p2[1] == Decimal("3.9999999999999990"))
 p2 = p.deriv()
 assert_(p2[1] == Decimal('8.0'))
 p2 = p.integ()
 assert_(p2[3] == Decimal("1.333333333333333333333333333"))
 assert_(p2[2] == Decimal('1.5'))
 assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
 p = np.poly([Decimal(1), Decimal(2)])
 assert_equal(np.poly([Decimal(1), Decimal(2)]),
 [1, Decimal(-3), Decimal(2)])
 
 def test_complex(self):
 p = np.poly1d([3j, 2j, 1j])
 p2 = p.integ()
 assert_((p2.coeffs == [1j, 1j, 1j, 0]).all())
 p2 = p.deriv()
 assert_((p2.coeffs == [6j, 2j]).all())
 
 def test_integ_coeffs(self):
 p = np.poly1d([3, 2, 1])
 p2 = p.integ(3, k=[9, 7, 6])
 assert_(
 (p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all())
 
 def test_zero_dims(self):
 try:
 np.poly(np.zeros((0, 0)))
 except ValueError:
 pass
 
 def test_poly_int_overflow(self):
 """
 Regression test for gh-5096.
 """
 v = np.arange(1, 21)
 assert_almost_equal(np.poly(v), np.poly(np.diag(v)))
 
 def test_zero_poly_dtype(self):
 """
 Regression test for gh-16354.
 """
 z = np.array([0, 0, 0])
 p = np.poly1d(z.astype(np.int64))
 assert_equal(p.coeffs.dtype, np.int64)
 
 p = np.poly1d(z.astype(np.float32))
 assert_equal(p.coeffs.dtype, np.float32)
 
 p = np.poly1d(z.astype(np.complex64))
 assert_equal(p.coeffs.dtype, np.complex64)
 
 def test_poly_eq(self):
 p = np.poly1d([1, 2, 3])
 p2 = np.poly1d([1, 2, 4])
 assert_equal(p == None, False)
 assert_equal(p != None, True)
 assert_equal(p == p, True)
 assert_equal(p == p2, False)
 assert_equal(p != p2, True)
 
 def test_polydiv(self):
 b = np.poly1d([2, 6, 6, 1])
 a = np.poly1d([-1j, (1+2j), -(2+1j), 1])
 q, r = np.polydiv(b, a)
 assert_equal(q.coeffs.dtype, np.complex128)
 assert_equal(r.coeffs.dtype, np.complex128)
 assert_equal(q*a + r, b)
 
 c = [1, 2, 3]
 d = np.poly1d([1, 2, 3])
 s, t = np.polydiv(c, d)
 assert isinstance(s, np.poly1d)
 assert isinstance(t, np.poly1d)
 u, v = np.polydiv(d, c)
 assert isinstance(u, np.poly1d)
 assert isinstance(v, np.poly1d)
 
 def test_poly_coeffs_mutable(self):
 """ Coefficients should be modifiable """
 p = np.poly1d([1, 2, 3])
 
 p.coeffs += 1
 assert_equal(p.coeffs, [2, 3, 4])
 
 p.coeffs[2] += 10
 assert_equal(p.coeffs, [2, 3, 14])
 
 # this never used to be allowed - let's not add features to deprecated
 # APIs
 assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1))
 
 |