| Viewing file:  ec.py (11.21 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
# This file is dual licensed under the terms of the Apache License, Version# 2.0, and the BSD License. See the LICENSE file in the root of this repository
 # for complete details.
 
 from __future__ import annotations
 
 import typing
 
 from cryptography.exceptions import (
 InvalidSignature,
 UnsupportedAlgorithm,
 _Reasons,
 )
 from cryptography.hazmat.backends.openssl.utils import (
 _calculate_digest_and_algorithm,
 _evp_pkey_derive,
 )
 from cryptography.hazmat.primitives import serialization
 from cryptography.hazmat.primitives.asymmetric import ec
 
 if typing.TYPE_CHECKING:
 from cryptography.hazmat.backends.openssl.backend import Backend
 
 
 def _check_signature_algorithm(
 signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
 ) -> None:
 if not isinstance(signature_algorithm, ec.ECDSA):
 raise UnsupportedAlgorithm(
 "Unsupported elliptic curve signature algorithm.",
 _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
 )
 
 
 def _ec_key_curve_sn(backend: Backend, ec_key) -> str:
 group = backend._lib.EC_KEY_get0_group(ec_key)
 backend.openssl_assert(group != backend._ffi.NULL)
 
 nid = backend._lib.EC_GROUP_get_curve_name(group)
 # The following check is to find EC keys with unnamed curves and raise
 # an error for now.
 if nid == backend._lib.NID_undef:
 raise ValueError(
 "ECDSA keys with explicit parameters are unsupported at this time"
 )
 
 # This is like the above check, but it also catches the case where you
 # explicitly encoded a curve with the same parameters as a named curve.
 # Don't do that.
 if (
 not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL
 and backend._lib.EC_GROUP_get_asn1_flag(group) == 0
 ):
 raise ValueError(
 "ECDSA keys with explicit parameters are unsupported at this time"
 )
 
 curve_name = backend._lib.OBJ_nid2sn(nid)
 backend.openssl_assert(curve_name != backend._ffi.NULL)
 
 sn = backend._ffi.string(curve_name).decode("ascii")
 return sn
 
 
 def _mark_asn1_named_ec_curve(backend: Backend, ec_cdata):
 """
 Set the named curve flag on the EC_KEY. This causes OpenSSL to
 serialize EC keys along with their curve OID which makes
 deserialization easier.
 """
 
 backend._lib.EC_KEY_set_asn1_flag(
 ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
 )
 
 
 def _check_key_infinity(backend: Backend, ec_cdata) -> None:
 point = backend._lib.EC_KEY_get0_public_key(ec_cdata)
 backend.openssl_assert(point != backend._ffi.NULL)
 group = backend._lib.EC_KEY_get0_group(ec_cdata)
 backend.openssl_assert(group != backend._ffi.NULL)
 if backend._lib.EC_POINT_is_at_infinity(group, point):
 raise ValueError(
 "Cannot load an EC public key where the point is at infinity"
 )
 
 
 def _sn_to_elliptic_curve(backend: Backend, sn: str) -> ec.EllipticCurve:
 try:
 return ec._CURVE_TYPES[sn]()
 except KeyError:
 raise UnsupportedAlgorithm(
 f"{sn} is not a supported elliptic curve",
 _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
 )
 
 
 def _ecdsa_sig_sign(
 backend: Backend, private_key: _EllipticCurvePrivateKey, data: bytes
 ) -> bytes:
 max_size = backend._lib.ECDSA_size(private_key._ec_key)
 backend.openssl_assert(max_size > 0)
 
 sigbuf = backend._ffi.new("unsigned char[]", max_size)
 siglen_ptr = backend._ffi.new("unsigned int[]", 1)
 res = backend._lib.ECDSA_sign(
 0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key
 )
 backend.openssl_assert(res == 1)
 return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]]
 
 
 def _ecdsa_sig_verify(
 backend: Backend,
 public_key: _EllipticCurvePublicKey,
 signature: bytes,
 data: bytes,
 ) -> None:
 res = backend._lib.ECDSA_verify(
 0, data, len(data), signature, len(signature), public_key._ec_key
 )
 if res != 1:
 backend._consume_errors()
 raise InvalidSignature
 
 
 class _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey):
 def __init__(self, backend: Backend, ec_key_cdata, evp_pkey):
 self._backend = backend
 self._ec_key = ec_key_cdata
 self._evp_pkey = evp_pkey
 
 sn = _ec_key_curve_sn(backend, ec_key_cdata)
 self._curve = _sn_to_elliptic_curve(backend, sn)
 _mark_asn1_named_ec_curve(backend, ec_key_cdata)
 _check_key_infinity(backend, ec_key_cdata)
 
 @property
 def curve(self) -> ec.EllipticCurve:
 return self._curve
 
 @property
 def key_size(self) -> int:
 return self.curve.key_size
 
 def exchange(
 self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey
 ) -> bytes:
 if not (
 self._backend.elliptic_curve_exchange_algorithm_supported(
 algorithm, self.curve
 )
 ):
 raise UnsupportedAlgorithm(
 "This backend does not support the ECDH algorithm.",
 _Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
 )
 
 if peer_public_key.curve.name != self.curve.name:
 raise ValueError(
 "peer_public_key and self are not on the same curve"
 )
 
 return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)
 
 def public_key(self) -> ec.EllipticCurvePublicKey:
 group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
 self._backend.openssl_assert(group != self._backend._ffi.NULL)
 
 curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
 public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid)
 
 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
 self._backend.openssl_assert(point != self._backend._ffi.NULL)
 
 res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
 self._backend.openssl_assert(res == 1)
 
 evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)
 
 return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)
 
 def private_numbers(self) -> ec.EllipticCurvePrivateNumbers:
 bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
 private_value = self._backend._bn_to_int(bn)
 return ec.EllipticCurvePrivateNumbers(
 private_value=private_value,
 public_numbers=self.public_key().public_numbers(),
 )
 
 def private_bytes(
 self,
 encoding: serialization.Encoding,
 format: serialization.PrivateFormat,
 encryption_algorithm: serialization.KeySerializationEncryption,
 ) -> bytes:
 return self._backend._private_key_bytes(
 encoding,
 format,
 encryption_algorithm,
 self,
 self._evp_pkey,
 self._ec_key,
 )
 
 def sign(
 self,
 data: bytes,
 signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
 ) -> bytes:
 _check_signature_algorithm(signature_algorithm)
 data, _ = _calculate_digest_and_algorithm(
 data,
 signature_algorithm.algorithm,
 )
 return _ecdsa_sig_sign(self._backend, self, data)
 
 
 class _EllipticCurvePublicKey(ec.EllipticCurvePublicKey):
 def __init__(self, backend: Backend, ec_key_cdata, evp_pkey):
 self._backend = backend
 self._ec_key = ec_key_cdata
 self._evp_pkey = evp_pkey
 
 sn = _ec_key_curve_sn(backend, ec_key_cdata)
 self._curve = _sn_to_elliptic_curve(backend, sn)
 _mark_asn1_named_ec_curve(backend, ec_key_cdata)
 _check_key_infinity(backend, ec_key_cdata)
 
 @property
 def curve(self) -> ec.EllipticCurve:
 return self._curve
 
 @property
 def key_size(self) -> int:
 return self.curve.key_size
 
 def __eq__(self, other: object) -> bool:
 if not isinstance(other, _EllipticCurvePublicKey):
 return NotImplemented
 
 return (
 self._backend._lib.EVP_PKEY_cmp(self._evp_pkey, other._evp_pkey)
 == 1
 )
 
 def public_numbers(self) -> ec.EllipticCurvePublicNumbers:
 group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
 self._backend.openssl_assert(group != self._backend._ffi.NULL)
 
 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
 self._backend.openssl_assert(point != self._backend._ffi.NULL)
 
 with self._backend._tmp_bn_ctx() as bn_ctx:
 bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
 bn_y = self._backend._lib.BN_CTX_get(bn_ctx)
 
 res = self._backend._lib.EC_POINT_get_affine_coordinates(
 group, point, bn_x, bn_y, bn_ctx
 )
 self._backend.openssl_assert(res == 1)
 
 x = self._backend._bn_to_int(bn_x)
 y = self._backend._bn_to_int(bn_y)
 
 return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve)
 
 def _encode_point(self, format: serialization.PublicFormat) -> bytes:
 if format is serialization.PublicFormat.CompressedPoint:
 conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED
 else:
 assert format is serialization.PublicFormat.UncompressedPoint
 conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED
 
 group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
 self._backend.openssl_assert(group != self._backend._ffi.NULL)
 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
 self._backend.openssl_assert(point != self._backend._ffi.NULL)
 with self._backend._tmp_bn_ctx() as bn_ctx:
 buflen = self._backend._lib.EC_POINT_point2oct(
 group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx
 )
 self._backend.openssl_assert(buflen > 0)
 buf = self._backend._ffi.new("char[]", buflen)
 res = self._backend._lib.EC_POINT_point2oct(
 group, point, conversion, buf, buflen, bn_ctx
 )
 self._backend.openssl_assert(buflen == res)
 
 return self._backend._ffi.buffer(buf)[:]
 
 def public_bytes(
 self,
 encoding: serialization.Encoding,
 format: serialization.PublicFormat,
 ) -> bytes:
 if (
 encoding is serialization.Encoding.X962
 or format is serialization.PublicFormat.CompressedPoint
 or format is serialization.PublicFormat.UncompressedPoint
 ):
 if encoding is not serialization.Encoding.X962 or format not in (
 serialization.PublicFormat.CompressedPoint,
 serialization.PublicFormat.UncompressedPoint,
 ):
 raise ValueError(
 "X962 encoding must be used with CompressedPoint or "
 "UncompressedPoint format"
 )
 
 return self._encode_point(format)
 else:
 return self._backend._public_key_bytes(
 encoding, format, self, self._evp_pkey, None
 )
 
 def verify(
 self,
 signature: bytes,
 data: bytes,
 signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
 ) -> None:
 _check_signature_algorithm(signature_algorithm)
 data, _ = _calculate_digest_and_algorithm(
 data,
 signature_algorithm.algorithm,
 )
 _ecdsa_sig_verify(self._backend, self, signature, data)
 
 |