| Viewing file:  brain_random.py (2.82 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
 # Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt
 
 from __future__ import annotations
 
 import random
 
 from astroid import helpers
 from astroid.context import InferenceContext
 from astroid.exceptions import UseInferenceDefault
 from astroid.inference_tip import inference_tip
 from astroid.manager import AstroidManager
 from astroid.nodes.node_classes import (
 Attribute,
 Call,
 Const,
 EvaluatedObject,
 List,
 Name,
 Set,
 Tuple,
 )
 
 ACCEPTED_ITERABLES_FOR_SAMPLE = (List, Set, Tuple)
 
 
 def _clone_node_with_lineno(node, parent, lineno):
 if isinstance(node, EvaluatedObject):
 node = node.original
 cls = node.__class__
 other_fields = node._other_fields
 _astroid_fields = node._astroid_fields
 init_params = {"lineno": lineno, "col_offset": node.col_offset, "parent": parent}
 postinit_params = {param: getattr(node, param) for param in _astroid_fields}
 if other_fields:
 init_params.update({param: getattr(node, param) for param in other_fields})
 new_node = cls(**init_params)
 if hasattr(node, "postinit") and _astroid_fields:
 new_node.postinit(**postinit_params)
 return new_node
 
 
 def infer_random_sample(node, context: InferenceContext | None = None):
 if len(node.args) != 2:
 raise UseInferenceDefault
 
 inferred_length = helpers.safe_infer(node.args[1], context=context)
 if not isinstance(inferred_length, Const):
 raise UseInferenceDefault
 if not isinstance(inferred_length.value, int):
 raise UseInferenceDefault
 
 inferred_sequence = helpers.safe_infer(node.args[0], context=context)
 if not inferred_sequence:
 raise UseInferenceDefault
 
 if not isinstance(inferred_sequence, ACCEPTED_ITERABLES_FOR_SAMPLE):
 raise UseInferenceDefault
 
 if inferred_length.value > len(inferred_sequence.elts):
 # In this case, this will raise a ValueError
 raise UseInferenceDefault
 
 try:
 elts = random.sample(inferred_sequence.elts, inferred_length.value)
 except ValueError as exc:
 raise UseInferenceDefault from exc
 
 new_node = List(lineno=node.lineno, col_offset=node.col_offset, parent=node.scope())
 new_elts = [
 _clone_node_with_lineno(elt, parent=new_node, lineno=new_node.lineno)
 for elt in elts
 ]
 new_node.postinit(new_elts)
 return iter((new_node,))
 
 
 def _looks_like_random_sample(node) -> bool:
 func = node.func
 if isinstance(func, Attribute):
 return func.attrname == "sample"
 if isinstance(func, Name):
 return func.name == "sample"
 return False
 
 
 AstroidManager().register_transform(
 Call, inference_tip(infer_random_sample), _looks_like_random_sample
 )
 
 |