| Viewing file:  brain_builtin_inference.py (33.45 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html# For details: https://github.com/PyCQA/astroid/blob/main/LICENSE
 # Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt
 
 """Astroid hooks for various builtins."""
 
 from __future__ import annotations
 
 import itertools
 from collections.abc import Iterator
 from functools import partial
 
 from astroid import arguments, helpers, inference_tip, nodes, objects, util
 from astroid.builder import AstroidBuilder
 from astroid.context import InferenceContext
 from astroid.exceptions import (
 AstroidTypeError,
 AttributeInferenceError,
 InferenceError,
 MroError,
 UseInferenceDefault,
 )
 from astroid.manager import AstroidManager
 from astroid.nodes import scoped_nodes
 
 OBJECT_DUNDER_NEW = "object.__new__"
 
 STR_CLASS = """
 class whatever(object):
 def join(self, iterable):
 return {rvalue}
 def replace(self, old, new, count=None):
 return {rvalue}
 def format(self, *args, **kwargs):
 return {rvalue}
 def encode(self, encoding='ascii', errors=None):
 return b''
 def decode(self, encoding='ascii', errors=None):
 return u''
 def capitalize(self):
 return {rvalue}
 def title(self):
 return {rvalue}
 def lower(self):
 return {rvalue}
 def upper(self):
 return {rvalue}
 def swapcase(self):
 return {rvalue}
 def index(self, sub, start=None, end=None):
 return 0
 def find(self, sub, start=None, end=None):
 return 0
 def count(self, sub, start=None, end=None):
 return 0
 def strip(self, chars=None):
 return {rvalue}
 def lstrip(self, chars=None):
 return {rvalue}
 def rstrip(self, chars=None):
 return {rvalue}
 def rjust(self, width, fillchar=None):
 return {rvalue}
 def center(self, width, fillchar=None):
 return {rvalue}
 def ljust(self, width, fillchar=None):
 return {rvalue}
 """
 
 
 BYTES_CLASS = """
 class whatever(object):
 def join(self, iterable):
 return {rvalue}
 def replace(self, old, new, count=None):
 return {rvalue}
 def decode(self, encoding='ascii', errors=None):
 return u''
 def capitalize(self):
 return {rvalue}
 def title(self):
 return {rvalue}
 def lower(self):
 return {rvalue}
 def upper(self):
 return {rvalue}
 def swapcase(self):
 return {rvalue}
 def index(self, sub, start=None, end=None):
 return 0
 def find(self, sub, start=None, end=None):
 return 0
 def count(self, sub, start=None, end=None):
 return 0
 def strip(self, chars=None):
 return {rvalue}
 def lstrip(self, chars=None):
 return {rvalue}
 def rstrip(self, chars=None):
 return {rvalue}
 def rjust(self, width, fillchar=None):
 return {rvalue}
 def center(self, width, fillchar=None):
 return {rvalue}
 def ljust(self, width, fillchar=None):
 return {rvalue}
 """
 
 
 def _extend_string_class(class_node, code, rvalue):
 """Function to extend builtin str/unicode class."""
 code = code.format(rvalue=rvalue)
 fake = AstroidBuilder(AstroidManager()).string_build(code)["whatever"]
 for method in fake.mymethods():
 method.parent = class_node
 method.lineno = None
 method.col_offset = None
 if "__class__" in method.locals:
 method.locals["__class__"] = [class_node]
 class_node.locals[method.name] = [method]
 method.parent = class_node
 
 
 def _extend_builtins(class_transforms):
 builtin_ast = AstroidManager().builtins_module
 for class_name, transform in class_transforms.items():
 transform(builtin_ast[class_name])
 
 
 _extend_builtins(
 {
 "bytes": partial(_extend_string_class, code=BYTES_CLASS, rvalue="b''"),
 "str": partial(_extend_string_class, code=STR_CLASS, rvalue="''"),
 }
 )
 
 
 def _builtin_filter_predicate(node, builtin_name) -> bool:
 if (
 builtin_name == "type"
 and node.root().name == "re"
 and isinstance(node.func, nodes.Name)
 and node.func.name == "type"
 and isinstance(node.parent, nodes.Assign)
 and len(node.parent.targets) == 1
 and isinstance(node.parent.targets[0], nodes.AssignName)
 and node.parent.targets[0].name in {"Pattern", "Match"}
 ):
 # Handle re.Pattern and re.Match in brain_re
 # Match these patterns from stdlib/re.py
 # ```py
 # Pattern = type(...)
 # Match = type(...)
 # ```
 return False
 if isinstance(node.func, nodes.Name) and node.func.name == builtin_name:
 return True
 if isinstance(node.func, nodes.Attribute):
 return (
 node.func.attrname == "fromkeys"
 and isinstance(node.func.expr, nodes.Name)
 and node.func.expr.name == "dict"
 )
 return False
 
 
 def register_builtin_transform(transform, builtin_name) -> None:
 """Register a new transform function for the given *builtin_name*.
 
 The transform function must accept two parameters, a node and
 an optional context.
 """
 
 def _transform_wrapper(node, context: InferenceContext | None = None):
 result = transform(node, context=context)
 if result:
 if not result.parent:
 # Let the transformation function determine
 # the parent for its result. Otherwise,
 # we set it to be the node we transformed from.
 result.parent = node
 
 if result.lineno is None:
 result.lineno = node.lineno
 # Can be a 'Module' see https://github.com/PyCQA/pylint/issues/4671
 # We don't have a regression test on this one: tread carefully
 if hasattr(result, "col_offset") and result.col_offset is None:
 result.col_offset = node.col_offset
 return iter([result])
 
 AstroidManager().register_transform(
 nodes.Call,
 inference_tip(_transform_wrapper),
 partial(_builtin_filter_predicate, builtin_name=builtin_name),
 )
 
 
 def _container_generic_inference(node, context, node_type, transform):
 args = node.args
 if not args:
 return node_type()
 if len(node.args) > 1:
 raise UseInferenceDefault()
 
 (arg,) = args
 transformed = transform(arg)
 if not transformed:
 try:
 inferred = next(arg.infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 if isinstance(inferred, util.UninferableBase):
 raise UseInferenceDefault
 transformed = transform(inferred)
 if not transformed or isinstance(transformed, util.UninferableBase):
 raise UseInferenceDefault
 return transformed
 
 
 def _container_generic_transform(  # pylint: disable=inconsistent-return-statements
 arg, context, klass, iterables, build_elts
 ):
 if isinstance(arg, klass):
 return arg
 if isinstance(arg, iterables):
 if all(isinstance(elt, nodes.Const) for elt in arg.elts):
 elts = [elt.value for elt in arg.elts]
 else:
 # TODO: Does not handle deduplication for sets.
 elts = []
 for element in arg.elts:
 if not element:
 continue
 inferred = helpers.safe_infer(element, context=context)
 if inferred:
 evaluated_object = nodes.EvaluatedObject(
 original=element, value=inferred
 )
 elts.append(evaluated_object)
 elif isinstance(arg, nodes.Dict):
 # Dicts need to have consts as strings already.
 if not all(isinstance(elt[0], nodes.Const) for elt in arg.items):
 raise UseInferenceDefault()
 elts = [item[0].value for item in arg.items]
 elif isinstance(arg, nodes.Const) and isinstance(arg.value, (str, bytes)):
 elts = arg.value
 else:
 return
 return klass.from_elements(elts=build_elts(elts))
 
 
 def _infer_builtin_container(
 node, context, klass=None, iterables=None, build_elts=None
 ):
 transform_func = partial(
 _container_generic_transform,
 context=context,
 klass=klass,
 iterables=iterables,
 build_elts=build_elts,
 )
 
 return _container_generic_inference(node, context, klass, transform_func)
 
 
 # pylint: disable=invalid-name
 infer_tuple = partial(
 _infer_builtin_container,
 klass=nodes.Tuple,
 iterables=(
 nodes.List,
 nodes.Set,
 objects.FrozenSet,
 objects.DictItems,
 objects.DictKeys,
 objects.DictValues,
 ),
 build_elts=tuple,
 )
 
 infer_list = partial(
 _infer_builtin_container,
 klass=nodes.List,
 iterables=(
 nodes.Tuple,
 nodes.Set,
 objects.FrozenSet,
 objects.DictItems,
 objects.DictKeys,
 objects.DictValues,
 ),
 build_elts=list,
 )
 
 infer_set = partial(
 _infer_builtin_container,
 klass=nodes.Set,
 iterables=(nodes.List, nodes.Tuple, objects.FrozenSet, objects.DictKeys),
 build_elts=set,
 )
 
 infer_frozenset = partial(
 _infer_builtin_container,
 klass=objects.FrozenSet,
 iterables=(nodes.List, nodes.Tuple, nodes.Set, objects.FrozenSet, objects.DictKeys),
 build_elts=frozenset,
 )
 
 
 def _get_elts(arg, context):
 def is_iterable(n):
 return isinstance(n, (nodes.List, nodes.Tuple, nodes.Set))
 
 try:
 inferred = next(arg.infer(context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 if isinstance(inferred, nodes.Dict):
 items = inferred.items
 elif is_iterable(inferred):
 items = []
 for elt in inferred.elts:
 # If an item is not a pair of two items,
 # then fallback to the default inference.
 # Also, take in consideration only hashable items,
 # tuples and consts. We are choosing Names as well.
 if not is_iterable(elt):
 raise UseInferenceDefault()
 if len(elt.elts) != 2:
 raise UseInferenceDefault()
 if not isinstance(elt.elts[0], (nodes.Tuple, nodes.Const, nodes.Name)):
 raise UseInferenceDefault()
 items.append(tuple(elt.elts))
 else:
 raise UseInferenceDefault()
 return items
 
 
 def infer_dict(node, context: InferenceContext | None = None):
 """Try to infer a dict call to a Dict node.
 
 The function treats the following cases:
 
 * dict()
 * dict(mapping)
 * dict(iterable)
 * dict(iterable, **kwargs)
 * dict(mapping, **kwargs)
 * dict(**kwargs)
 
 If a case can't be inferred, we'll fallback to default inference.
 """
 call = arguments.CallSite.from_call(node, context=context)
 if call.has_invalid_arguments() or call.has_invalid_keywords():
 raise UseInferenceDefault
 
 args = call.positional_arguments
 kwargs = list(call.keyword_arguments.items())
 
 if not args and not kwargs:
 # dict()
 return nodes.Dict()
 if kwargs and not args:
 # dict(a=1, b=2, c=4)
 items = [(nodes.Const(key), value) for key, value in kwargs]
 elif len(args) == 1 and kwargs:
 # dict(some_iterable, b=2, c=4)
 elts = _get_elts(args[0], context)
 keys = [(nodes.Const(key), value) for key, value in kwargs]
 items = elts + keys
 elif len(args) == 1:
 items = _get_elts(args[0], context)
 else:
 raise UseInferenceDefault()
 value = nodes.Dict(
 col_offset=node.col_offset, lineno=node.lineno, parent=node.parent
 )
 value.postinit(items)
 return value
 
 
 def infer_super(node, context: InferenceContext | None = None):
 """Understand super calls.
 
 There are some restrictions for what can be understood:
 
 * unbounded super (one argument form) is not understood.
 
 * if the super call is not inside a function (classmethod or method),
 then the default inference will be used.
 
 * if the super arguments can't be inferred, the default inference
 will be used.
 """
 if len(node.args) == 1:
 # Ignore unbounded super.
 raise UseInferenceDefault
 
 scope = node.scope()
 if not isinstance(scope, nodes.FunctionDef):
 # Ignore non-method uses of super.
 raise UseInferenceDefault
 if scope.type not in ("classmethod", "method"):
 # Not interested in staticmethods.
 raise UseInferenceDefault
 
 cls = scoped_nodes.get_wrapping_class(scope)
 if not node.args:
 mro_pointer = cls
 # In we are in a classmethod, the interpreter will fill
 # automatically the class as the second argument, not an instance.
 if scope.type == "classmethod":
 mro_type = cls
 else:
 mro_type = cls.instantiate_class()
 else:
 try:
 mro_pointer = next(node.args[0].infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 try:
 mro_type = next(node.args[1].infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 
 if isinstance(mro_pointer, util.UninferableBase) or isinstance(
 mro_type, util.UninferableBase
 ):
 # No way we could understand this.
 raise UseInferenceDefault
 
 super_obj = objects.Super(
 mro_pointer=mro_pointer, mro_type=mro_type, self_class=cls, scope=scope
 )
 super_obj.parent = node
 return super_obj
 
 
 def _infer_getattr_args(node, context):
 if len(node.args) not in (2, 3):
 # Not a valid getattr call.
 raise UseInferenceDefault
 
 try:
 obj = next(node.args[0].infer(context=context))
 attr = next(node.args[1].infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 
 if isinstance(obj, util.UninferableBase) or isinstance(attr, util.UninferableBase):
 # If one of the arguments is something we can't infer,
 # then also make the result of the getattr call something
 # which is unknown.
 return util.Uninferable, util.Uninferable
 
 is_string = isinstance(attr, nodes.Const) and isinstance(attr.value, str)
 if not is_string:
 raise UseInferenceDefault
 
 return obj, attr.value
 
 
 def infer_getattr(node, context: InferenceContext | None = None):
 """Understand getattr calls.
 
 If one of the arguments is an Uninferable object, then the
 result will be an Uninferable object. Otherwise, the normal attribute
 lookup will be done.
 """
 obj, attr = _infer_getattr_args(node, context)
 if (
 isinstance(obj, util.UninferableBase)
 or isinstance(attr, util.UninferableBase)
 or not hasattr(obj, "igetattr")
 ):
 return util.Uninferable
 
 try:
 return next(obj.igetattr(attr, context=context))
 except (StopIteration, InferenceError, AttributeInferenceError):
 if len(node.args) == 3:
 # Try to infer the default and return it instead.
 try:
 return next(node.args[2].infer(context=context))
 except (StopIteration, InferenceError) as exc:
 raise UseInferenceDefault from exc
 
 raise UseInferenceDefault
 
 
 def infer_hasattr(node, context: InferenceContext | None = None):
 """Understand hasattr calls.
 
 This always guarantees three possible outcomes for calling
 hasattr: Const(False) when we are sure that the object
 doesn't have the intended attribute, Const(True) when
 we know that the object has the attribute and Uninferable
 when we are unsure of the outcome of the function call.
 """
 try:
 obj, attr = _infer_getattr_args(node, context)
 if (
 isinstance(obj, util.UninferableBase)
 or isinstance(attr, util.UninferableBase)
 or not hasattr(obj, "getattr")
 ):
 return util.Uninferable
 obj.getattr(attr, context=context)
 except UseInferenceDefault:
 # Can't infer something from this function call.
 return util.Uninferable
 except AttributeInferenceError:
 # Doesn't have it.
 return nodes.Const(False)
 return nodes.Const(True)
 
 
 def infer_callable(node, context: InferenceContext | None = None):
 """Understand callable calls.
 
 This follows Python's semantics, where an object
 is callable if it provides an attribute __call__,
 even though that attribute is something which can't be
 called.
 """
 if len(node.args) != 1:
 # Invalid callable call.
 raise UseInferenceDefault
 
 argument = node.args[0]
 try:
 inferred = next(argument.infer(context=context))
 except (InferenceError, StopIteration):
 return util.Uninferable
 if isinstance(inferred, util.UninferableBase):
 return util.Uninferable
 return nodes.Const(inferred.callable())
 
 
 def infer_property(
 node: nodes.Call, context: InferenceContext | None = None
 ) -> objects.Property:
 """Understand `property` class.
 
 This only infers the output of `property`
 call, not the arguments themselves.
 """
 if len(node.args) < 1:
 # Invalid property call.
 raise UseInferenceDefault
 
 getter = node.args[0]
 try:
 inferred = next(getter.infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 
 if not isinstance(inferred, (nodes.FunctionDef, nodes.Lambda)):
 raise UseInferenceDefault
 
 prop_func = objects.Property(
 function=inferred,
 name=inferred.name,
 lineno=node.lineno,
 parent=node,
 col_offset=node.col_offset,
 )
 prop_func.postinit(
 body=[],
 args=inferred.args,
 doc_node=getattr(inferred, "doc_node", None),
 )
 return prop_func
 
 
 def infer_bool(node, context: InferenceContext | None = None):
 """Understand bool calls."""
 if len(node.args) > 1:
 # Invalid bool call.
 raise UseInferenceDefault
 
 if not node.args:
 return nodes.Const(False)
 
 argument = node.args[0]
 try:
 inferred = next(argument.infer(context=context))
 except (InferenceError, StopIteration):
 return util.Uninferable
 if isinstance(inferred, util.UninferableBase):
 return util.Uninferable
 
 bool_value = inferred.bool_value(context=context)
 if isinstance(bool_value, util.UninferableBase):
 return util.Uninferable
 return nodes.Const(bool_value)
 
 
 def infer_type(node, context: InferenceContext | None = None):
 """Understand the one-argument form of *type*."""
 if len(node.args) != 1:
 raise UseInferenceDefault
 
 return helpers.object_type(node.args[0], context)
 
 
 def infer_slice(node, context: InferenceContext | None = None):
 """Understand `slice` calls."""
 args = node.args
 if not 0 < len(args) <= 3:
 raise UseInferenceDefault
 
 infer_func = partial(helpers.safe_infer, context=context)
 args = [infer_func(arg) for arg in args]
 for arg in args:
 if not arg or isinstance(arg, util.UninferableBase):
 raise UseInferenceDefault
 if not isinstance(arg, nodes.Const):
 raise UseInferenceDefault
 if not isinstance(arg.value, (type(None), int)):
 raise UseInferenceDefault
 
 if len(args) < 3:
 # Make sure we have 3 arguments.
 args.extend([None] * (3 - len(args)))
 
 slice_node = nodes.Slice(
 lineno=node.lineno, col_offset=node.col_offset, parent=node.parent
 )
 slice_node.postinit(*args)
 return slice_node
 
 
 def _infer_object__new__decorator(node, context: InferenceContext | None = None):
 # Instantiate class immediately
 # since that's what @object.__new__ does
 return iter((node.instantiate_class(),))
 
 
 def _infer_object__new__decorator_check(node) -> bool:
 """Predicate before inference_tip.
 
 Check if the given ClassDef has an @object.__new__ decorator
 """
 if not node.decorators:
 return False
 
 for decorator in node.decorators.nodes:
 if isinstance(decorator, nodes.Attribute):
 if decorator.as_string() == OBJECT_DUNDER_NEW:
 return True
 return False
 
 
 def infer_issubclass(callnode, context: InferenceContext | None = None):
 """Infer issubclass() calls.
 
 :param nodes.Call callnode: an `issubclass` call
 :param InferenceContext context: the context for the inference
 :rtype nodes.Const: Boolean Const value of the `issubclass` call
 :raises UseInferenceDefault: If the node cannot be inferred
 """
 call = arguments.CallSite.from_call(callnode, context=context)
 if call.keyword_arguments:
 # issubclass doesn't support keyword arguments
 raise UseInferenceDefault("TypeError: issubclass() takes no keyword arguments")
 if len(call.positional_arguments) != 2:
 raise UseInferenceDefault(
 f"Expected two arguments, got {len(call.positional_arguments)}"
 )
 # The left hand argument is the obj to be checked
 obj_node, class_or_tuple_node = call.positional_arguments
 
 try:
 obj_type = next(obj_node.infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault from exc
 if not isinstance(obj_type, nodes.ClassDef):
 raise UseInferenceDefault("TypeError: arg 1 must be class")
 
 # The right hand argument is the class(es) that the given
 # object is to be checked against.
 try:
 class_container = _class_or_tuple_to_container(
 class_or_tuple_node, context=context
 )
 except InferenceError as exc:
 raise UseInferenceDefault from exc
 try:
 issubclass_bool = helpers.object_issubclass(obj_type, class_container, context)
 except AstroidTypeError as exc:
 raise UseInferenceDefault("TypeError: " + str(exc)) from exc
 except MroError as exc:
 raise UseInferenceDefault from exc
 return nodes.Const(issubclass_bool)
 
 
 def infer_isinstance(callnode, context: InferenceContext | None = None):
 """Infer isinstance calls.
 
 :param nodes.Call callnode: an isinstance call
 :rtype nodes.Const: Boolean Const value of isinstance call
 
 :raises UseInferenceDefault: If the node cannot be inferred
 """
 call = arguments.CallSite.from_call(callnode, context=context)
 if call.keyword_arguments:
 # isinstance doesn't support keyword arguments
 raise UseInferenceDefault("TypeError: isinstance() takes no keyword arguments")
 if len(call.positional_arguments) != 2:
 raise UseInferenceDefault(
 f"Expected two arguments, got {len(call.positional_arguments)}"
 )
 # The left hand argument is the obj to be checked
 obj_node, class_or_tuple_node = call.positional_arguments
 # The right hand argument is the class(es) that the given
 # obj is to be check is an instance of
 try:
 class_container = _class_or_tuple_to_container(
 class_or_tuple_node, context=context
 )
 except InferenceError as exc:
 raise UseInferenceDefault from exc
 try:
 isinstance_bool = helpers.object_isinstance(obj_node, class_container, context)
 except AstroidTypeError as exc:
 raise UseInferenceDefault("TypeError: " + str(exc)) from exc
 except MroError as exc:
 raise UseInferenceDefault from exc
 if isinstance(isinstance_bool, util.UninferableBase):
 raise UseInferenceDefault
 return nodes.Const(isinstance_bool)
 
 
 def _class_or_tuple_to_container(node, context: InferenceContext | None = None):
 # Move inferences results into container
 # to simplify later logic
 # raises InferenceError if any of the inferences fall through
 try:
 node_infer = next(node.infer(context=context))
 except StopIteration as e:
 raise InferenceError(node=node, context=context) from e
 # arg2 MUST be a type or a TUPLE of types
 # for isinstance
 if isinstance(node_infer, nodes.Tuple):
 try:
 class_container = [
 next(node.infer(context=context)) for node in node_infer.elts
 ]
 except StopIteration as e:
 raise InferenceError(node=node, context=context) from e
 class_container = [
 klass_node for klass_node in class_container if klass_node is not None
 ]
 else:
 class_container = [node_infer]
 return class_container
 
 
 def infer_len(node, context: InferenceContext | None = None):
 """Infer length calls.
 
 :param nodes.Call node: len call to infer
 :param context.InferenceContext: node context
 :rtype nodes.Const: a Const node with the inferred length, if possible
 """
 call = arguments.CallSite.from_call(node, context=context)
 if call.keyword_arguments:
 raise UseInferenceDefault("TypeError: len() must take no keyword arguments")
 if len(call.positional_arguments) != 1:
 raise UseInferenceDefault(
 "TypeError: len() must take exactly one argument "
 "({len}) given".format(len=len(call.positional_arguments))
 )
 [argument_node] = call.positional_arguments
 
 try:
 return nodes.Const(helpers.object_len(argument_node, context=context))
 except (AstroidTypeError, InferenceError) as exc:
 raise UseInferenceDefault(str(exc)) from exc
 
 
 def infer_str(node, context: InferenceContext | None = None):
 """Infer str() calls.
 
 :param nodes.Call node: str() call to infer
 :param context.InferenceContext: node context
 :rtype nodes.Const: a Const containing an empty string
 """
 call = arguments.CallSite.from_call(node, context=context)
 if call.keyword_arguments:
 raise UseInferenceDefault("TypeError: str() must take no keyword arguments")
 try:
 return nodes.Const("")
 except (AstroidTypeError, InferenceError) as exc:
 raise UseInferenceDefault(str(exc)) from exc
 
 
 def infer_int(node, context: InferenceContext | None = None):
 """Infer int() calls.
 
 :param nodes.Call node: int() call to infer
 :param context.InferenceContext: node context
 :rtype nodes.Const: a Const containing the integer value of the int() call
 """
 call = arguments.CallSite.from_call(node, context=context)
 if call.keyword_arguments:
 raise UseInferenceDefault("TypeError: int() must take no keyword arguments")
 
 if call.positional_arguments:
 try:
 first_value = next(call.positional_arguments[0].infer(context=context))
 except (InferenceError, StopIteration) as exc:
 raise UseInferenceDefault(str(exc)) from exc
 
 if isinstance(first_value, util.UninferableBase):
 raise UseInferenceDefault
 
 if isinstance(first_value, nodes.Const) and isinstance(
 first_value.value, (int, str)
 ):
 try:
 actual_value = int(first_value.value)
 except ValueError:
 return nodes.Const(0)
 return nodes.Const(actual_value)
 
 return nodes.Const(0)
 
 
 def infer_dict_fromkeys(node, context: InferenceContext | None = None):
 """Infer dict.fromkeys.
 
 :param nodes.Call node: dict.fromkeys() call to infer
 :param context.InferenceContext context: node context
 :rtype nodes.Dict:
 a Dictionary containing the values that astroid was able to infer.
 In case the inference failed for any reason, an empty dictionary
 will be inferred instead.
 """
 
 def _build_dict_with_elements(elements):
 new_node = nodes.Dict(
 col_offset=node.col_offset, lineno=node.lineno, parent=node.parent
 )
 new_node.postinit(elements)
 return new_node
 
 call = arguments.CallSite.from_call(node, context=context)
 if call.keyword_arguments:
 raise UseInferenceDefault("TypeError: int() must take no keyword arguments")
 if len(call.positional_arguments) not in {1, 2}:
 raise UseInferenceDefault(
 "TypeError: Needs between 1 and 2 positional arguments"
 )
 
 default = nodes.Const(None)
 values = call.positional_arguments[0]
 try:
 inferred_values = next(values.infer(context=context))
 except (InferenceError, StopIteration):
 return _build_dict_with_elements([])
 if inferred_values is util.Uninferable:
 return _build_dict_with_elements([])
 
 # Limit to a couple of potential values, as this can become pretty complicated
 accepted_iterable_elements = (nodes.Const,)
 if isinstance(inferred_values, (nodes.List, nodes.Set, nodes.Tuple)):
 elements = inferred_values.elts
 for element in elements:
 if not isinstance(element, accepted_iterable_elements):
 # Fallback to an empty dict
 return _build_dict_with_elements([])
 
 elements_with_value = [(element, default) for element in elements]
 return _build_dict_with_elements(elements_with_value)
 if isinstance(inferred_values, nodes.Const) and isinstance(
 inferred_values.value, (str, bytes)
 ):
 elements = [
 (nodes.Const(element), default) for element in inferred_values.value
 ]
 return _build_dict_with_elements(elements)
 if isinstance(inferred_values, nodes.Dict):
 keys = inferred_values.itered()
 for key in keys:
 if not isinstance(key, accepted_iterable_elements):
 # Fallback to an empty dict
 return _build_dict_with_elements([])
 
 elements_with_value = [(element, default) for element in keys]
 return _build_dict_with_elements(elements_with_value)
 
 # Fallback to an empty dictionary
 return _build_dict_with_elements([])
 
 
 def _infer_copy_method(
 node: nodes.Call, context: InferenceContext | None = None
 ) -> Iterator[nodes.NodeNG]:
 assert isinstance(node.func, nodes.Attribute)
 inferred_orig, inferred_copy = itertools.tee(node.func.expr.infer(context=context))
 if all(
 isinstance(
 inferred_node, (nodes.Dict, nodes.List, nodes.Set, objects.FrozenSet)
 )
 for inferred_node in inferred_orig
 ):
 return inferred_copy
 
 raise UseInferenceDefault()
 
 
 def _is_str_format_call(node: nodes.Call) -> bool:
 """Catch calls to str.format()."""
 if not isinstance(node.func, nodes.Attribute) or not node.func.attrname == "format":
 return False
 
 if isinstance(node.func.expr, nodes.Name):
 value = helpers.safe_infer(node.func.expr)
 else:
 value = node.func.expr
 
 return isinstance(value, nodes.Const) and isinstance(value.value, str)
 
 
 def _infer_str_format_call(
 node: nodes.Call, context: InferenceContext | None = None
 ) -> Iterator[nodes.Const | util.UninferableBase]:
 """Return a Const node based on the template and passed arguments."""
 call = arguments.CallSite.from_call(node, context=context)
 if isinstance(node.func.expr, nodes.Name):
 value: nodes.Const | None = helpers.safe_infer(node.func.expr)
 if value is None:
 return iter([util.Uninferable])
 else:
 value = node.func.expr
 
 format_template = value.value
 
 # Get the positional arguments passed
 inferred_positional = [
 helpers.safe_infer(i, context) for i in call.positional_arguments
 ]
 if not all(isinstance(i, nodes.Const) for i in inferred_positional):
 return iter([util.Uninferable])
 pos_values: list[str] = [i.value for i in inferred_positional]
 
 # Get the keyword arguments passed
 inferred_keyword = {
 k: helpers.safe_infer(v, context) for k, v in call.keyword_arguments.items()
 }
 if not all(isinstance(i, nodes.Const) for i in inferred_keyword.values()):
 return iter([util.Uninferable])
 keyword_values: dict[str, str] = {k: v.value for k, v in inferred_keyword.items()}
 
 try:
 formatted_string = format_template.format(*pos_values, **keyword_values)
 except (AttributeError, IndexError, KeyError, TypeError, ValueError):
 # AttributeError: named field in format string was not found in the arguments
 # IndexError: there are too few arguments to interpolate
 # TypeError: Unsupported format string
 # ValueError: Unknown format code
 return iter([util.Uninferable])
 
 return iter([nodes.const_factory(formatted_string)])
 
 
 # Builtins inference
 register_builtin_transform(infer_bool, "bool")
 register_builtin_transform(infer_super, "super")
 register_builtin_transform(infer_callable, "callable")
 register_builtin_transform(infer_property, "property")
 register_builtin_transform(infer_getattr, "getattr")
 register_builtin_transform(infer_hasattr, "hasattr")
 register_builtin_transform(infer_tuple, "tuple")
 register_builtin_transform(infer_set, "set")
 register_builtin_transform(infer_list, "list")
 register_builtin_transform(infer_dict, "dict")
 register_builtin_transform(infer_frozenset, "frozenset")
 register_builtin_transform(infer_type, "type")
 register_builtin_transform(infer_slice, "slice")
 register_builtin_transform(infer_isinstance, "isinstance")
 register_builtin_transform(infer_issubclass, "issubclass")
 register_builtin_transform(infer_len, "len")
 register_builtin_transform(infer_str, "str")
 register_builtin_transform(infer_int, "int")
 register_builtin_transform(infer_dict_fromkeys, "dict.fromkeys")
 
 
 # Infer object.__new__ calls
 AstroidManager().register_transform(
 nodes.ClassDef,
 inference_tip(_infer_object__new__decorator),
 _infer_object__new__decorator_check,
 )
 
 AstroidManager().register_transform(
 nodes.Call,
 inference_tip(_infer_copy_method),
 lambda node: isinstance(node.func, nodes.Attribute)
 and node.func.attrname == "copy",
 )
 
 AstroidManager().register_transform(
 nodes.Call, inference_tip(_infer_str_format_call), _is_str_format_call
 )
 
 |