| Viewing file:  result.py (51.38 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
# engine/result.py# Copyright (C) 2005-2019 the SQLAlchemy authors and contributors
 # <see AUTHORS file>
 #
 # This module is part of SQLAlchemy and is released under
 # the MIT License: http://www.opensource.org/licenses/mit-license.php
 
 """Define result set constructs including :class:`.ResultProxy`
 and :class:`.RowProxy."""
 
 
 import collections
 import operator
 
 from .. import exc
 from .. import util
 from ..sql import expression
 from ..sql import sqltypes
 from ..sql import util as sql_util
 
 
 # This reconstructor is necessary so that pickles with the C extension or
 # without use the same Binary format.
 try:
 # We need a different reconstructor on the C extension so that we can
 # add extra checks that fields have correctly been initialized by
 # __setstate__.
 from sqlalchemy.cresultproxy import safe_rowproxy_reconstructor
 
 # The extra function embedding is needed so that the
 # reconstructor function has the same signature whether or not
 # the extension is present.
 def rowproxy_reconstructor(cls, state):
 return safe_rowproxy_reconstructor(cls, state)
 
 
 except ImportError:
 
 def rowproxy_reconstructor(cls, state):
 obj = cls.__new__(cls)
 obj.__setstate__(state)
 return obj
 
 
 try:
 from sqlalchemy.cresultproxy import BaseRowProxy
 
 _baserowproxy_usecext = True
 except ImportError:
 _baserowproxy_usecext = False
 
 class BaseRowProxy(object):
 __slots__ = ("_parent", "_row", "_processors", "_keymap")
 
 def __init__(self, parent, row, processors, keymap):
 """RowProxy objects are constructed by ResultProxy objects."""
 
 self._parent = parent
 self._row = row
 self._processors = processors
 self._keymap = keymap
 
 def __reduce__(self):
 return (
 rowproxy_reconstructor,
 (self.__class__, self.__getstate__()),
 )
 
 def values(self):
 """Return the values represented by this RowProxy as a list."""
 return list(self)
 
 def __iter__(self):
 for processor, value in zip(self._processors, self._row):
 if processor is None:
 yield value
 else:
 yield processor(value)
 
 def __len__(self):
 return len(self._row)
 
 def __getitem__(self, key):
 try:
 processor, obj, index = self._keymap[key]
 except KeyError:
 processor, obj, index = self._parent._key_fallback(key)
 except TypeError:
 if isinstance(key, slice):
 l = []
 for processor, value in zip(
 self._processors[key], self._row[key]
 ):
 if processor is None:
 l.append(value)
 else:
 l.append(processor(value))
 return tuple(l)
 else:
 raise
 if index is None:
 raise exc.InvalidRequestError(
 "Ambiguous column name '%s' in "
 "result set column descriptions" % obj
 )
 if processor is not None:
 return processor(self._row[index])
 else:
 return self._row[index]
 
 def __getattr__(self, name):
 try:
 return self[name]
 except KeyError as e:
 raise AttributeError(e.args[0])
 
 
 class RowProxy(BaseRowProxy):
 """Proxy values from a single cursor row.
 
 Mostly follows "ordered dictionary" behavior, mapping result
 values to the string-based column name, the integer position of
 the result in the row, as well as Column instances which can be
 mapped to the original Columns that produced this result set (for
 results that correspond to constructed SQL expressions).
 """
 
 __slots__ = ()
 
 def __contains__(self, key):
 return self._parent._has_key(key)
 
 def __getstate__(self):
 return {"_parent": self._parent, "_row": tuple(self)}
 
 def __setstate__(self, state):
 self._parent = parent = state["_parent"]
 self._row = state["_row"]
 self._processors = parent._processors
 self._keymap = parent._keymap
 
 __hash__ = None
 
 def _op(self, other, op):
 return (
 op(tuple(self), tuple(other))
 if isinstance(other, RowProxy)
 else op(tuple(self), other)
 )
 
 def __lt__(self, other):
 return self._op(other, operator.lt)
 
 def __le__(self, other):
 return self._op(other, operator.le)
 
 def __ge__(self, other):
 return self._op(other, operator.ge)
 
 def __gt__(self, other):
 return self._op(other, operator.gt)
 
 def __eq__(self, other):
 return self._op(other, operator.eq)
 
 def __ne__(self, other):
 return self._op(other, operator.ne)
 
 def __repr__(self):
 return repr(sql_util._repr_row(self))
 
 def has_key(self, key):
 """Return True if this RowProxy contains the given key."""
 
 return self._parent._has_key(key)
 
 def items(self):
 """Return a list of tuples, each tuple containing a key/value pair."""
 # TODO: no coverage here
 return [(key, self[key]) for key in self.keys()]
 
 def keys(self):
 """Return the list of keys as strings represented by this RowProxy."""
 
 return self._parent.keys
 
 def iterkeys(self):
 return iter(self._parent.keys)
 
 def itervalues(self):
 return iter(self)
 
 
 try:
 # Register RowProxy with Sequence,
 # so sequence protocol is implemented
 util.collections_abc.Sequence.register(RowProxy)
 except ImportError:
 pass
 
 
 class ResultMetaData(object):
 """Handle cursor.description, applying additional info from an execution
 context."""
 
 __slots__ = (
 "_keymap",
 "case_sensitive",
 "matched_on_name",
 "_processors",
 "keys",
 "_orig_processors",
 )
 
 def __init__(self, parent, cursor_description):
 context = parent.context
 dialect = context.dialect
 self.case_sensitive = dialect.case_sensitive
 self.matched_on_name = False
 self._orig_processors = None
 
 if context.result_column_struct:
 result_columns, cols_are_ordered, textual_ordered = (
 context.result_column_struct
 )
 num_ctx_cols = len(result_columns)
 else:
 result_columns = (
 cols_are_ordered
 ) = num_ctx_cols = textual_ordered = False
 
 # merge cursor.description with the column info
 # present in the compiled structure, if any
 raw = self._merge_cursor_description(
 context,
 cursor_description,
 result_columns,
 num_ctx_cols,
 cols_are_ordered,
 textual_ordered,
 )
 
 self._keymap = {}
 if not _baserowproxy_usecext:
 # keymap indexes by integer index: this is only used
 # in the pure Python BaseRowProxy.__getitem__
 # implementation to avoid an expensive
 # isinstance(key, util.int_types) in the most common
 # case path
 
 len_raw = len(raw)
 
 self._keymap.update(
 [(elem[0], (elem[3], elem[4], elem[0])) for elem in raw]
 + [
 (elem[0] - len_raw, (elem[3], elem[4], elem[0]))
 for elem in raw
 ]
 )
 
 # processors in key order for certain per-row
 # views like __iter__ and slices
 self._processors = [elem[3] for elem in raw]
 
 # keymap by primary string...
 by_key = dict([(elem[2], (elem[3], elem[4], elem[0])) for elem in raw])
 
 # for compiled SQL constructs, copy additional lookup keys into
 # the key lookup map, such as Column objects, labels,
 # column keys and other names
 if num_ctx_cols:
 
 # if by-primary-string dictionary smaller (or bigger?!) than
 # number of columns, assume we have dupes, rewrite
 # dupe records with "None" for index which results in
 # ambiguous column exception when accessed.
 if len(by_key) != num_ctx_cols:
 seen = set()
 for rec in raw:
 key = rec[1]
 if key in seen:
 # this is an "ambiguous" element, replacing
 # the full record in the map
 key = key.lower() if not self.case_sensitive else key
 by_key[key] = (None, key, None)
 seen.add(key)
 
 # copy secondary elements from compiled columns
 # into self._keymap, write in the potentially "ambiguous"
 # element
 self._keymap.update(
 [
 (obj_elem, by_key[elem[2]])
 for elem in raw
 if elem[4]
 for obj_elem in elem[4]
 ]
 )
 
 # if we did a pure positional match, then reset the
 # original "expression element" back to the "unambiguous"
 # entry.  This is a new behavior in 1.1 which impacts
 # TextAsFrom but also straight compiled SQL constructs.
 if not self.matched_on_name:
 self._keymap.update(
 [
 (elem[4][0], (elem[3], elem[4], elem[0]))
 for elem in raw
 if elem[4]
 ]
 )
 else:
 # no dupes - copy secondary elements from compiled
 # columns into self._keymap
 self._keymap.update(
 [
 (obj_elem, (elem[3], elem[4], elem[0]))
 for elem in raw
 if elem[4]
 for obj_elem in elem[4]
 ]
 )
 
 # update keymap with primary string names taking
 # precedence
 self._keymap.update(by_key)
 
 # update keymap with "translated" names (sqlite-only thing)
 if not num_ctx_cols and context._translate_colname:
 self._keymap.update(
 [(elem[5], self._keymap[elem[2]]) for elem in raw if elem[5]]
 )
 
 def _merge_cursor_description(
 self,
 context,
 cursor_description,
 result_columns,
 num_ctx_cols,
 cols_are_ordered,
 textual_ordered,
 ):
 """Merge a cursor.description with compiled result column information.
 
 There are at least four separate strategies used here, selected
 depending on the type of SQL construct used to start with.
 
 The most common case is that of the compiled SQL expression construct,
 which generated the column names present in the raw SQL string and
 which has the identical number of columns as were reported by
 cursor.description.  In this case, we assume a 1-1 positional mapping
 between the entries in cursor.description and the compiled object.
 This is also the most performant case as we disregard extracting /
 decoding the column names present in cursor.description since we
 already have the desired name we generated in the compiled SQL
 construct.
 
 The next common case is that of the completely raw string SQL,
 such as passed to connection.execute().  In this case we have no
 compiled construct to work with, so we extract and decode the
 names from cursor.description and index those as the primary
 result row target keys.
 
 The remaining fairly common case is that of the textual SQL
 that includes at least partial column information; this is when
 we use a :class:`.TextAsFrom` construct.   This construct may have
 unordered or ordered column information.  In the ordered case, we
 merge the cursor.description and the compiled construct's information
 positionally, and warn if there are additional description names
 present, however we still decode the names in cursor.description
 as we don't have a guarantee that the names in the columns match
 on these.   In the unordered case, we match names in cursor.description
 to that of the compiled construct based on name matching.
 In both of these cases, the cursor.description names and the column
 expression objects and names are indexed as result row target keys.
 
 The final case is much less common, where we have a compiled
 non-textual SQL expression construct, but the number of columns
 in cursor.description doesn't match what's in the compiled
 construct.  We make the guess here that there might be textual
 column expressions in the compiled construct that themselves include
 a comma in them causing them to split.  We do the same name-matching
 as with textual non-ordered columns.
 
 The name-matched system of merging is the same as that used by
 SQLAlchemy for all cases up through te 0.9 series.   Positional
 matching for compiled SQL expressions was introduced in 1.0 as a
 major performance feature, and positional matching for textual
 :class:`.TextAsFrom` objects in 1.1.  As name matching is no longer
 a common case, it was acceptable to factor it into smaller generator-
 oriented methods that are easier to understand, but incur slightly
 more performance overhead.
 
 """
 
 case_sensitive = context.dialect.case_sensitive
 
 if (
 num_ctx_cols
 and cols_are_ordered
 and not textual_ordered
 and num_ctx_cols == len(cursor_description)
 ):
 self.keys = [elem[0] for elem in result_columns]
 # pure positional 1-1 case; doesn't need to read
 # the names from cursor.description
 return [
 (
 idx,
 key,
 name.lower() if not case_sensitive else name,
 context.get_result_processor(
 type_, key, cursor_description[idx][1]
 ),
 obj,
 None,
 )
 for idx, (key, name, obj, type_) in enumerate(result_columns)
 ]
 else:
 # name-based or text-positional cases, where we need
 # to read cursor.description names
 if textual_ordered:
 # textual positional case
 raw_iterator = self._merge_textual_cols_by_position(
 context, cursor_description, result_columns
 )
 elif num_ctx_cols:
 # compiled SQL with a mismatch of description cols
 # vs. compiled cols, or textual w/ unordered columns
 raw_iterator = self._merge_cols_by_name(
 context, cursor_description, result_columns
 )
 else:
 # no compiled SQL, just a raw string
 raw_iterator = self._merge_cols_by_none(
 context, cursor_description
 )
 
 return [
 (
 idx,
 colname,
 colname,
 context.get_result_processor(
 mapped_type, colname, coltype
 ),
 obj,
 untranslated,
 )
 for (
 idx,
 colname,
 mapped_type,
 coltype,
 obj,
 untranslated,
 ) in raw_iterator
 ]
 
 def _colnames_from_description(self, context, cursor_description):
 """Extract column names and data types from a cursor.description.
 
 Applies unicode decoding, column translation, "normalization",
 and case sensitivity rules to the names based on the dialect.
 
 """
 
 dialect = context.dialect
 case_sensitive = dialect.case_sensitive
 translate_colname = context._translate_colname
 description_decoder = (
 dialect._description_decoder
 if dialect.description_encoding
 else None
 )
 normalize_name = (
 dialect.normalize_name if dialect.requires_name_normalize else None
 )
 untranslated = None
 
 self.keys = []
 
 for idx, rec in enumerate(cursor_description):
 colname = rec[0]
 coltype = rec[1]
 
 if description_decoder:
 colname = description_decoder(colname)
 
 if translate_colname:
 colname, untranslated = translate_colname(colname)
 
 if normalize_name:
 colname = normalize_name(colname)
 
 self.keys.append(colname)
 if not case_sensitive:
 colname = colname.lower()
 
 yield idx, colname, untranslated, coltype
 
 def _merge_textual_cols_by_position(
 self, context, cursor_description, result_columns
 ):
 num_ctx_cols = len(result_columns) if result_columns else None
 
 if num_ctx_cols > len(cursor_description):
 util.warn(
 "Number of columns in textual SQL (%d) is "
 "smaller than number of columns requested (%d)"
 % (num_ctx_cols, len(cursor_description))
 )
 seen = set()
 for (
 idx,
 colname,
 untranslated,
 coltype,
 ) in self._colnames_from_description(context, cursor_description):
 if idx < num_ctx_cols:
 ctx_rec = result_columns[idx]
 obj = ctx_rec[2]
 mapped_type = ctx_rec[3]
 if obj[0] in seen:
 raise exc.InvalidRequestError(
 "Duplicate column expression requested "
 "in textual SQL: %r" % obj[0]
 )
 seen.add(obj[0])
 else:
 mapped_type = sqltypes.NULLTYPE
 obj = None
 
 yield idx, colname, mapped_type, coltype, obj, untranslated
 
 def _merge_cols_by_name(self, context, cursor_description, result_columns):
 dialect = context.dialect
 case_sensitive = dialect.case_sensitive
 result_map = self._create_result_map(result_columns, case_sensitive)
 
 self.matched_on_name = True
 for (
 idx,
 colname,
 untranslated,
 coltype,
 ) in self._colnames_from_description(context, cursor_description):
 try:
 ctx_rec = result_map[colname]
 except KeyError:
 mapped_type = sqltypes.NULLTYPE
 obj = None
 else:
 obj = ctx_rec[1]
 mapped_type = ctx_rec[2]
 yield idx, colname, mapped_type, coltype, obj, untranslated
 
 def _merge_cols_by_none(self, context, cursor_description):
 for (
 idx,
 colname,
 untranslated,
 coltype,
 ) in self._colnames_from_description(context, cursor_description):
 yield idx, colname, sqltypes.NULLTYPE, coltype, None, untranslated
 
 @classmethod
 def _create_result_map(cls, result_columns, case_sensitive=True):
 d = {}
 for elem in result_columns:
 key, rec = elem[0], elem[1:]
 if not case_sensitive:
 key = key.lower()
 if key in d:
 # conflicting keyname, just double up the list
 # of objects.  this will cause an "ambiguous name"
 # error if an attempt is made by the result set to
 # access.
 e_name, e_obj, e_type = d[key]
 d[key] = e_name, e_obj + rec[1], e_type
 else:
 d[key] = rec
 return d
 
 def _key_fallback(self, key, raiseerr=True):
 map_ = self._keymap
 result = None
 if isinstance(key, util.string_types):
 result = map_.get(key if self.case_sensitive else key.lower())
 # fallback for targeting a ColumnElement to a textual expression
 # this is a rare use case which only occurs when matching text()
 # or colummn('name') constructs to ColumnElements, or after a
 # pickle/unpickle roundtrip
 elif isinstance(key, expression.ColumnElement):
 if (
 key._label
 and (key._label if self.case_sensitive else key._label.lower())
 in map_
 ):
 result = map_[
 key._label if self.case_sensitive else key._label.lower()
 ]
 elif (
 hasattr(key, "name")
 and (key.name if self.case_sensitive else key.name.lower())
 in map_
 ):
 # match is only on name.
 result = map_[
 key.name if self.case_sensitive else key.name.lower()
 ]
 # search extra hard to make sure this
 # isn't a column/label name overlap.
 # this check isn't currently available if the row
 # was unpickled.
 if result is not None and result[1] is not None:
 for obj in result[1]:
 if key._compare_name_for_result(obj):
 break
 else:
 result = None
 if result is None:
 if raiseerr:
 raise exc.NoSuchColumnError(
 "Could not locate column in row for column '%s'"
 % expression._string_or_unprintable(key)
 )
 else:
 return None
 else:
 map_[key] = result
 return result
 
 def _has_key(self, key):
 if key in self._keymap:
 return True
 else:
 return self._key_fallback(key, False) is not None
 
 def _getter(self, key, raiseerr=True):
 if key in self._keymap:
 processor, obj, index = self._keymap[key]
 else:
 ret = self._key_fallback(key, raiseerr)
 if ret is None:
 return None
 processor, obj, index = ret
 
 if index is None:
 raise exc.InvalidRequestError(
 "Ambiguous column name '%s' in "
 "result set column descriptions" % obj
 )
 
 return operator.itemgetter(index)
 
 def __getstate__(self):
 return {
 "_pickled_keymap": dict(
 (key, index)
 for key, (processor, obj, index) in self._keymap.items()
 if isinstance(key, util.string_types + util.int_types)
 ),
 "keys": self.keys,
 "case_sensitive": self.case_sensitive,
 "matched_on_name": self.matched_on_name,
 }
 
 def __setstate__(self, state):
 # the row has been processed at pickling time so we don't need any
 # processor anymore
 self._processors = [None for _ in range(len(state["keys"]))]
 self._keymap = keymap = {}
 for key, index in state["_pickled_keymap"].items():
 # not preserving "obj" here, unfortunately our
 # proxy comparison fails with the unpickle
 keymap[key] = (None, None, index)
 self.keys = state["keys"]
 self.case_sensitive = state["case_sensitive"]
 self.matched_on_name = state["matched_on_name"]
 
 
 class ResultProxy(object):
 """Wraps a DB-API cursor object to provide easier access to row columns.
 
 Individual columns may be accessed by their integer position,
 case-insensitive column name, or by ``schema.Column``
 object. e.g.::
 
 row = fetchone()
 
 col1 = row[0]    # access via integer position
 
 col2 = row['col2']   # access via name
 
 col3 = row[mytable.c.mycol] # access via Column object.
 
 ``ResultProxy`` also handles post-processing of result column
 data using ``TypeEngine`` objects, which are referenced from
 the originating SQL statement that produced this result set.
 
 """
 
 _process_row = RowProxy
 out_parameters = None
 _autoclose_connection = False
 _metadata = None
 _soft_closed = False
 closed = False
 
 def __init__(self, context):
 self.context = context
 self.dialect = context.dialect
 self.cursor = self._saved_cursor = context.cursor
 self.connection = context.root_connection
 self._echo = (
 self.connection._echo and context.engine._should_log_debug()
 )
 self._init_metadata()
 
 def _getter(self, key, raiseerr=True):
 try:
 getter = self._metadata._getter
 except AttributeError:
 return self._non_result(None)
 else:
 return getter(key, raiseerr)
 
 def _has_key(self, key):
 try:
 has_key = self._metadata._has_key
 except AttributeError:
 return self._non_result(None)
 else:
 return has_key(key)
 
 def _init_metadata(self):
 cursor_description = self._cursor_description()
 if cursor_description is not None:
 if (
 self.context.compiled
 and "compiled_cache" in self.context.execution_options
 ):
 if self.context.compiled._cached_metadata:
 self._metadata = self.context.compiled._cached_metadata
 else:
 self._metadata = (
 self.context.compiled._cached_metadata
 ) = ResultMetaData(self, cursor_description)
 else:
 self._metadata = ResultMetaData(self, cursor_description)
 if self._echo:
 self.context.engine.logger.debug(
 "Col %r", tuple(x[0] for x in cursor_description)
 )
 
 def keys(self):
 """Return the current set of string keys for rows."""
 if self._metadata:
 return self._metadata.keys
 else:
 return []
 
 @util.memoized_property
 def rowcount(self):
 """Return the 'rowcount' for this result.
 
 The 'rowcount' reports the number of rows *matched*
 by the WHERE criterion of an UPDATE or DELETE statement.
 
 .. note::
 
 Notes regarding :attr:`.ResultProxy.rowcount`:
 
 
 * This attribute returns the number of rows *matched*,
 which is not necessarily the same as the number of rows
 that were actually *modified* - an UPDATE statement, for example,
 may have no net change on a given row if the SET values
 given are the same as those present in the row already.
 Such a row would be matched but not modified.
 On backends that feature both styles, such as MySQL,
 rowcount is configured by default to return the match
 count in all cases.
 
 * :attr:`.ResultProxy.rowcount` is *only* useful in conjunction
 with an UPDATE or DELETE statement.  Contrary to what the Python
 DBAPI says, it does *not* return the
 number of rows available from the results of a SELECT statement
 as DBAPIs cannot support this functionality when rows are
 unbuffered.
 
 * :attr:`.ResultProxy.rowcount` may not be fully implemented by
 all dialects.  In particular, most DBAPIs do not support an
 aggregate rowcount result from an executemany call.
 The :meth:`.ResultProxy.supports_sane_rowcount` and
 :meth:`.ResultProxy.supports_sane_multi_rowcount` methods
 will report from the dialect if each usage is known to be
 supported.
 
 * Statements that use RETURNING may not return a correct
 rowcount.
 
 """
 try:
 return self.context.rowcount
 except BaseException as e:
 self.connection._handle_dbapi_exception(
 e, None, None, self.cursor, self.context
 )
 
 @property
 def lastrowid(self):
 """return the 'lastrowid' accessor on the DBAPI cursor.
 
 This is a DBAPI specific method and is only functional
 for those backends which support it, for statements
 where it is appropriate.  It's behavior is not
 consistent across backends.
 
 Usage of this method is normally unnecessary when
 using insert() expression constructs; the
 :attr:`~ResultProxy.inserted_primary_key` attribute provides a
 tuple of primary key values for a newly inserted row,
 regardless of database backend.
 
 """
 try:
 return self._saved_cursor.lastrowid
 except BaseException as e:
 self.connection._handle_dbapi_exception(
 e, None, None, self._saved_cursor, self.context
 )
 
 @property
 def returns_rows(self):
 """True if this :class:`.ResultProxy` returns rows.
 
 I.e. if it is legal to call the methods
 :meth:`~.ResultProxy.fetchone`,
 :meth:`~.ResultProxy.fetchmany`
 :meth:`~.ResultProxy.fetchall`.
 
 """
 return self._metadata is not None
 
 @property
 def is_insert(self):
 """True if this :class:`.ResultProxy` is the result
 of a executing an expression language compiled
 :func:`.expression.insert` construct.
 
 When True, this implies that the
 :attr:`inserted_primary_key` attribute is accessible,
 assuming the statement did not include
 a user defined "returning" construct.
 
 """
 return self.context.isinsert
 
 def _cursor_description(self):
 """May be overridden by subclasses."""
 
 return self._saved_cursor.description
 
 def _soft_close(self):
 """Soft close this :class:`.ResultProxy`.
 
 This releases all DBAPI cursor resources, but leaves the
 ResultProxy "open" from a semantic perspective, meaning the
 fetchXXX() methods will continue to return empty results.
 
 This method is called automatically when:
 
 * all result rows are exhausted using the fetchXXX() methods.
 * cursor.description is None.
 
 This method is **not public**, but is documented in order to clarify
 the "autoclose" process used.
 
 .. versionadded:: 1.0.0
 
 .. seealso::
 
 :meth:`.ResultProxy.close`
 
 
 """
 if self._soft_closed:
 return
 self._soft_closed = True
 cursor = self.cursor
 self.connection._safe_close_cursor(cursor)
 if self._autoclose_connection:
 self.connection.close()
 self.cursor = None
 
 def close(self):
 """Close this ResultProxy.
 
 This closes out the underlying DBAPI cursor corresponding
 to the statement execution, if one is still present.  Note that the
 DBAPI cursor is automatically released when the :class:`.ResultProxy`
 exhausts all available rows.  :meth:`.ResultProxy.close` is generally
 an optional method except in the case when discarding a
 :class:`.ResultProxy` that still has additional rows pending for fetch.
 
 In the case of a result that is the product of
 :ref:`connectionless execution <dbengine_implicit>`,
 the underlying :class:`.Connection` object is also closed, which
 :term:`releases` DBAPI connection resources.
 
 After this method is called, it is no longer valid to call upon
 the fetch methods, which will raise a :class:`.ResourceClosedError`
 on subsequent use.
 
 .. versionchanged:: 1.0.0 - the :meth:`.ResultProxy.close` method
 has been separated out from the process that releases the underlying
 DBAPI cursor resource.   The "auto close" feature of the
 :class:`.Connection` now performs a so-called "soft close", which
 releases the underlying DBAPI cursor, but allows the
 :class:`.ResultProxy` to still behave as an open-but-exhausted
 result set; the actual :meth:`.ResultProxy.close` method is never
 called.    It is still safe to discard a :class:`.ResultProxy`
 that has been fully exhausted without calling this method.
 
 .. seealso::
 
 :ref:`connections_toplevel`
 
 :meth:`.ResultProxy._soft_close`
 
 """
 
 if not self.closed:
 self._soft_close()
 self.closed = True
 
 def __iter__(self):
 """Implement iteration protocol."""
 
 while True:
 row = self.fetchone()
 if row is None:
 return
 else:
 yield row
 
 def __next__(self):
 """Implement the next() protocol.
 
 .. versionadded:: 1.2
 
 """
 row = self.fetchone()
 if row is None:
 raise StopIteration()
 else:
 return row
 
 next = __next__
 
 @util.memoized_property
 def inserted_primary_key(self):
 """Return the primary key for the row just inserted.
 
 The return value is a list of scalar values
 corresponding to the list of primary key columns
 in the target table.
 
 This only applies to single row :func:`.insert`
 constructs which did not explicitly specify
 :meth:`.Insert.returning`.
 
 Note that primary key columns which specify a
 server_default clause,
 or otherwise do not qualify as "autoincrement"
 columns (see the notes at :class:`.Column`), and were
 generated using the database-side default, will
 appear in this list as ``None`` unless the backend
 supports "returning" and the insert statement executed
 with the "implicit returning" enabled.
 
 Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
 statement is not a compiled expression construct
 or is not an insert() construct.
 
 """
 
 if not self.context.compiled:
 raise exc.InvalidRequestError(
 "Statement is not a compiled " "expression construct."
 )
 elif not self.context.isinsert:
 raise exc.InvalidRequestError(
 "Statement is not an insert() " "expression construct."
 )
 elif self.context._is_explicit_returning:
 raise exc.InvalidRequestError(
 "Can't call inserted_primary_key "
 "when returning() "
 "is used."
 )
 
 return self.context.inserted_primary_key
 
 def last_updated_params(self):
 """Return the collection of updated parameters from this
 execution.
 
 Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
 statement is not a compiled expression construct
 or is not an update() construct.
 
 """
 if not self.context.compiled:
 raise exc.InvalidRequestError(
 "Statement is not a compiled " "expression construct."
 )
 elif not self.context.isupdate:
 raise exc.InvalidRequestError(
 "Statement is not an update() " "expression construct."
 )
 elif self.context.executemany:
 return self.context.compiled_parameters
 else:
 return self.context.compiled_parameters[0]
 
 def last_inserted_params(self):
 """Return the collection of inserted parameters from this
 execution.
 
 Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
 statement is not a compiled expression construct
 or is not an insert() construct.
 
 """
 if not self.context.compiled:
 raise exc.InvalidRequestError(
 "Statement is not a compiled " "expression construct."
 )
 elif not self.context.isinsert:
 raise exc.InvalidRequestError(
 "Statement is not an insert() " "expression construct."
 )
 elif self.context.executemany:
 return self.context.compiled_parameters
 else:
 return self.context.compiled_parameters[0]
 
 @property
 def returned_defaults(self):
 """Return the values of default columns that were fetched using
 the :meth:`.ValuesBase.return_defaults` feature.
 
 The value is an instance of :class:`.RowProxy`, or ``None``
 if :meth:`.ValuesBase.return_defaults` was not used or if the
 backend does not support RETURNING.
 
 .. versionadded:: 0.9.0
 
 .. seealso::
 
 :meth:`.ValuesBase.return_defaults`
 
 """
 return self.context.returned_defaults
 
 def lastrow_has_defaults(self):
 """Return ``lastrow_has_defaults()`` from the underlying
 :class:`.ExecutionContext`.
 
 See :class:`.ExecutionContext` for details.
 
 """
 
 return self.context.lastrow_has_defaults()
 
 def postfetch_cols(self):
 """Return ``postfetch_cols()`` from the underlying
 :class:`.ExecutionContext`.
 
 See :class:`.ExecutionContext` for details.
 
 Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
 statement is not a compiled expression construct
 or is not an insert() or update() construct.
 
 """
 
 if not self.context.compiled:
 raise exc.InvalidRequestError(
 "Statement is not a compiled " "expression construct."
 )
 elif not self.context.isinsert and not self.context.isupdate:
 raise exc.InvalidRequestError(
 "Statement is not an insert() or update() "
 "expression construct."
 )
 return self.context.postfetch_cols
 
 def prefetch_cols(self):
 """Return ``prefetch_cols()`` from the underlying
 :class:`.ExecutionContext`.
 
 See :class:`.ExecutionContext` for details.
 
 Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
 statement is not a compiled expression construct
 or is not an insert() or update() construct.
 
 """
 
 if not self.context.compiled:
 raise exc.InvalidRequestError(
 "Statement is not a compiled " "expression construct."
 )
 elif not self.context.isinsert and not self.context.isupdate:
 raise exc.InvalidRequestError(
 "Statement is not an insert() or update() "
 "expression construct."
 )
 return self.context.prefetch_cols
 
 def supports_sane_rowcount(self):
 """Return ``supports_sane_rowcount`` from the dialect.
 
 See :attr:`.ResultProxy.rowcount` for background.
 
 """
 
 return self.dialect.supports_sane_rowcount
 
 def supports_sane_multi_rowcount(self):
 """Return ``supports_sane_multi_rowcount`` from the dialect.
 
 See :attr:`.ResultProxy.rowcount` for background.
 
 """
 
 return self.dialect.supports_sane_multi_rowcount
 
 def _fetchone_impl(self):
 try:
 return self.cursor.fetchone()
 except AttributeError:
 return self._non_result(None)
 
 def _fetchmany_impl(self, size=None):
 try:
 if size is None:
 return self.cursor.fetchmany()
 else:
 return self.cursor.fetchmany(size)
 except AttributeError:
 return self._non_result([])
 
 def _fetchall_impl(self):
 try:
 return self.cursor.fetchall()
 except AttributeError:
 return self._non_result([])
 
 def _non_result(self, default):
 if self._metadata is None:
 raise exc.ResourceClosedError(
 "This result object does not return rows. "
 "It has been closed automatically."
 )
 elif self.closed:
 raise exc.ResourceClosedError("This result object is closed.")
 else:
 return default
 
 def process_rows(self, rows):
 process_row = self._process_row
 metadata = self._metadata
 keymap = metadata._keymap
 processors = metadata._processors
 if self._echo:
 log = self.context.engine.logger.debug
 l = []
 for row in rows:
 log("Row %r", sql_util._repr_row(row))
 l.append(process_row(metadata, row, processors, keymap))
 return l
 else:
 return [
 process_row(metadata, row, processors, keymap) for row in rows
 ]
 
 def fetchall(self):
 """Fetch all rows, just like DB-API ``cursor.fetchall()``.
 
 After all rows have been exhausted, the underlying DBAPI
 cursor resource is released, and the object may be safely
 discarded.
 
 Subsequent calls to :meth:`.ResultProxy.fetchall` will return
 an empty list.   After the :meth:`.ResultProxy.close` method is
 called, the method will raise :class:`.ResourceClosedError`.
 
 .. versionchanged:: 1.0.0 - Added "soft close" behavior which
 allows the result to be used in an "exhausted" state prior to
 calling the :meth:`.ResultProxy.close` method.
 
 """
 
 try:
 l = self.process_rows(self._fetchall_impl())
 self._soft_close()
 return l
 except BaseException as e:
 self.connection._handle_dbapi_exception(
 e, None, None, self.cursor, self.context
 )
 
 def fetchmany(self, size=None):
 """Fetch many rows, just like DB-API
 ``cursor.fetchmany(size=cursor.arraysize)``.
 
 After all rows have been exhausted, the underlying DBAPI
 cursor resource is released, and the object may be safely
 discarded.
 
 Calls to :meth:`.ResultProxy.fetchmany` after all rows have been
 exhausted will return
 an empty list.   After the :meth:`.ResultProxy.close` method is
 called, the method will raise :class:`.ResourceClosedError`.
 
 .. versionchanged:: 1.0.0 - Added "soft close" behavior which
 allows the result to be used in an "exhausted" state prior to
 calling the :meth:`.ResultProxy.close` method.
 
 """
 
 try:
 l = self.process_rows(self._fetchmany_impl(size))
 if len(l) == 0:
 self._soft_close()
 return l
 except BaseException as e:
 self.connection._handle_dbapi_exception(
 e, None, None, self.cursor, self.context
 )
 
 def fetchone(self):
 """Fetch one row, just like DB-API ``cursor.fetchone()``.
 
 After all rows have been exhausted, the underlying DBAPI
 cursor resource is released, and the object may be safely
 discarded.
 
 Calls to :meth:`.ResultProxy.fetchone` after all rows have
 been exhausted will return ``None``.
 After the :meth:`.ResultProxy.close` method is
 called, the method will raise :class:`.ResourceClosedError`.
 
 .. versionchanged:: 1.0.0 - Added "soft close" behavior which
 allows the result to be used in an "exhausted" state prior to
 calling the :meth:`.ResultProxy.close` method.
 
 """
 try:
 row = self._fetchone_impl()
 if row is not None:
 return self.process_rows([row])[0]
 else:
 self._soft_close()
 return None
 except BaseException as e:
 self.connection._handle_dbapi_exception(
 e, None, None, self.cursor, self.context
 )
 
 def first(self):
 """Fetch the first row and then close the result set unconditionally.
 
 Returns None if no row is present.
 
 After calling this method, the object is fully closed,
 e.g. the :meth:`.ResultProxy.close` method will have been called.
 
 """
 if self._metadata is None:
 return self._non_result(None)
 
 try:
 row = self._fetchone_impl()
 except BaseException as e:
 self.connection._handle_dbapi_exception(
 e, None, None, self.cursor, self.context
 )
 
 try:
 if row is not None:
 return self.process_rows([row])[0]
 else:
 return None
 finally:
 self.close()
 
 def scalar(self):
 """Fetch the first column of the first row, and close the result set.
 
 Returns None if no row is present.
 
 After calling this method, the object is fully closed,
 e.g. the :meth:`.ResultProxy.close` method will have been called.
 
 """
 row = self.first()
 if row is not None:
 return row[0]
 else:
 return None
 
 
 class BufferedRowResultProxy(ResultProxy):
 """A ResultProxy with row buffering behavior.
 
 ``ResultProxy`` that buffers the contents of a selection of rows
 before ``fetchone()`` is called.  This is to allow the results of
 ``cursor.description`` to be available immediately, when
 interfacing with a DB-API that requires rows to be consumed before
 this information is available (currently psycopg2, when used with
 server-side cursors).
 
 The pre-fetching behavior fetches only one row initially, and then
 grows its buffer size by a fixed amount with each successive need
 for additional rows up to a size of 1000.
 
 The size argument is configurable using the ``max_row_buffer``
 execution option::
 
 with psycopg2_engine.connect() as conn:
 
 result = conn.execution_options(
 stream_results=True, max_row_buffer=50
 ).execute("select * from table")
 
 .. versionadded:: 1.0.6 Added the ``max_row_buffer`` option.
 
 .. seealso::
 
 :ref:`psycopg2_execution_options`
 """
 
 def _init_metadata(self):
 self._max_row_buffer = self.context.execution_options.get(
 "max_row_buffer", None
 )
 self.__buffer_rows()
 super(BufferedRowResultProxy, self)._init_metadata()
 
 # this is a "growth chart" for the buffering of rows.
 # each successive __buffer_rows call will use the next
 # value in the list for the buffer size until the max
 # is reached
 size_growth = {
 1: 5,
 5: 10,
 10: 20,
 20: 50,
 50: 100,
 100: 250,
 250: 500,
 500: 1000,
 }
 
 def __buffer_rows(self):
 if self.cursor is None:
 return
 size = getattr(self, "_bufsize", 1)
 self.__rowbuffer = collections.deque(self.cursor.fetchmany(size))
 self._bufsize = self.size_growth.get(size, size)
 if self._max_row_buffer is not None:
 self._bufsize = min(self._max_row_buffer, self._bufsize)
 
 def _soft_close(self, **kw):
 self.__rowbuffer.clear()
 super(BufferedRowResultProxy, self)._soft_close(**kw)
 
 def _fetchone_impl(self):
 if self.cursor is None:
 return self._non_result(None)
 if not self.__rowbuffer:
 self.__buffer_rows()
 if not self.__rowbuffer:
 return None
 return self.__rowbuffer.popleft()
 
 def _fetchmany_impl(self, size=None):
 if size is None:
 return self._fetchall_impl()
 result = []
 for x in range(0, size):
 row = self._fetchone_impl()
 if row is None:
 break
 result.append(row)
 return result
 
 def _fetchall_impl(self):
 if self.cursor is None:
 return self._non_result([])
 self.__rowbuffer.extend(self.cursor.fetchall())
 ret = self.__rowbuffer
 self.__rowbuffer = collections.deque()
 return ret
 
 
 class FullyBufferedResultProxy(ResultProxy):
 """A result proxy that buffers rows fully upon creation.
 
 Used for operations where a result is to be delivered
 after the database conversation can not be continued,
 such as MSSQL INSERT...OUTPUT after an autocommit.
 
 """
 
 def _init_metadata(self):
 super(FullyBufferedResultProxy, self)._init_metadata()
 self.__rowbuffer = self._buffer_rows()
 
 def _buffer_rows(self):
 return collections.deque(self.cursor.fetchall())
 
 def _soft_close(self, **kw):
 self.__rowbuffer.clear()
 super(FullyBufferedResultProxy, self)._soft_close(**kw)
 
 def _fetchone_impl(self):
 if self.__rowbuffer:
 return self.__rowbuffer.popleft()
 else:
 return self._non_result(None)
 
 def _fetchmany_impl(self, size=None):
 if size is None:
 return self._fetchall_impl()
 result = []
 for x in range(0, size):
 row = self._fetchone_impl()
 if row is None:
 break
 result.append(row)
 return result
 
 def _fetchall_impl(self):
 if not self.cursor:
 return self._non_result([])
 ret = self.__rowbuffer
 self.__rowbuffer = collections.deque()
 return ret
 
 
 class BufferedColumnRow(RowProxy):
 def __init__(self, parent, row, processors, keymap):
 # preprocess row
 row = list(row)
 # this is a tad faster than using enumerate
 index = 0
 for processor in parent._orig_processors:
 if processor is not None:
 row[index] = processor(row[index])
 index += 1
 row = tuple(row)
 super(BufferedColumnRow, self).__init__(
 parent, row, processors, keymap
 )
 
 
 class BufferedColumnResultProxy(ResultProxy):
 """A ResultProxy with column buffering behavior.
 
 ``ResultProxy`` that loads all columns into memory each time
 fetchone() is called.  If fetchmany() or fetchall() are called,
 the full grid of results is fetched.  This is to operate with
 databases where result rows contain "live" results that fall out
 of scope unless explicitly fetched.
 
 .. versionchanged:: 1.2  This :class:`.ResultProxy` is not used by
 any SQLAlchemy-included dialects.
 
 """
 
 _process_row = BufferedColumnRow
 
 def _init_metadata(self):
 super(BufferedColumnResultProxy, self)._init_metadata()
 
 metadata = self._metadata
 
 # don't double-replace the processors, in the case
 # of a cached ResultMetaData
 if metadata._orig_processors is None:
 # orig_processors will be used to preprocess each row when
 # they are constructed.
 metadata._orig_processors = metadata._processors
 # replace the all type processors by None processors.
 metadata._processors = [None for _ in range(len(metadata.keys))]
 keymap = {}
 for k, (func, obj, index) in metadata._keymap.items():
 keymap[k] = (None, obj, index)
 metadata._keymap = keymap
 
 def fetchall(self):
 # can't call cursor.fetchall(), since rows must be
 # fully processed before requesting more from the DBAPI.
 l = []
 while True:
 row = self.fetchone()
 if row is None:
 break
 l.append(row)
 return l
 
 def fetchmany(self, size=None):
 # can't call cursor.fetchmany(), since rows must be
 # fully processed before requesting more from the DBAPI.
 if size is None:
 return self.fetchall()
 l = []
 for i in range(size):
 row = self.fetchone()
 if row is None:
 break
 l.append(row)
 return l
 
 |