| Viewing file:  test_random.py (62.93 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
from __future__ import division, absolute_import, print_functionimport warnings
 
 import numpy as np
 from numpy.testing import (
 TestCase, run_module_suite, assert_, assert_raises, assert_equal,
 assert_warns, assert_no_warnings, assert_array_equal,
 assert_array_almost_equal, suppress_warnings)
 from numpy import random
 import sys
 import warnings
 
 
 class TestSeed(TestCase):
 def test_scalar(self):
 s = np.random.RandomState(0)
 assert_equal(s.randint(1000), 684)
 s = np.random.RandomState(4294967295)
 assert_equal(s.randint(1000), 419)
 
 def test_array(self):
 s = np.random.RandomState(range(10))
 assert_equal(s.randint(1000), 468)
 s = np.random.RandomState(np.arange(10))
 assert_equal(s.randint(1000), 468)
 s = np.random.RandomState([0])
 assert_equal(s.randint(1000), 973)
 s = np.random.RandomState([4294967295])
 assert_equal(s.randint(1000), 265)
 
 def test_invalid_scalar(self):
 # seed must be an unsigned 32 bit integer
 assert_raises(TypeError, np.random.RandomState, -0.5)
 assert_raises(ValueError, np.random.RandomState, -1)
 
 def test_invalid_array(self):
 # seed must be an unsigned 32 bit integer
 assert_raises(TypeError, np.random.RandomState, [-0.5])
 assert_raises(ValueError, np.random.RandomState, [-1])
 assert_raises(ValueError, np.random.RandomState, [4294967296])
 assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
 assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
 
 
 class TestBinomial(TestCase):
 def test_n_zero(self):
 # Tests the corner case of n == 0 for the binomial distribution.
 # binomial(0, p) should be zero for any p in [0, 1].
 # This test addresses issue #3480.
 zeros = np.zeros(2, dtype='int')
 for p in [0, .5, 1]:
 assert_(random.binomial(0, p) == 0)
 assert_array_equal(random.binomial(zeros, p), zeros)
 
 def test_p_is_nan(self):
 # Issue #4571.
 assert_raises(ValueError, random.binomial, 1, np.nan)
 
 
 class TestMultinomial(TestCase):
 def test_basic(self):
 random.multinomial(100, [0.2, 0.8])
 
 def test_zero_probability(self):
 random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
 
 def test_int_negative_interval(self):
 assert_(-5 <= random.randint(-5, -1) < -1)
 x = random.randint(-5, -1, 5)
 assert_(np.all(-5 <= x))
 assert_(np.all(x < -1))
 
 def test_size(self):
 # gh-3173
 p = [0.5, 0.5]
 assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
 assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
 assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
 assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
 assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
 assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
 (2, 2, 2))
 
 assert_raises(TypeError, np.random.multinomial, 1, p,
 np.float(1))
 
 
 class TestSetState(TestCase):
 def setUp(self):
 self.seed = 1234567890
 self.prng = random.RandomState(self.seed)
 self.state = self.prng.get_state()
 
 def test_basic(self):
 old = self.prng.tomaxint(16)
 self.prng.set_state(self.state)
 new = self.prng.tomaxint(16)
 assert_(np.all(old == new))
 
 def test_gaussian_reset(self):
 # Make sure the cached every-other-Gaussian is reset.
 old = self.prng.standard_normal(size=3)
 self.prng.set_state(self.state)
 new = self.prng.standard_normal(size=3)
 assert_(np.all(old == new))
 
 def test_gaussian_reset_in_media_res(self):
 # When the state is saved with a cached Gaussian, make sure the
 # cached Gaussian is restored.
 
 self.prng.standard_normal()
 state = self.prng.get_state()
 old = self.prng.standard_normal(size=3)
 self.prng.set_state(state)
 new = self.prng.standard_normal(size=3)
 assert_(np.all(old == new))
 
 def test_backwards_compatibility(self):
 # Make sure we can accept old state tuples that do not have the
 # cached Gaussian value.
 old_state = self.state[:-2]
 x1 = self.prng.standard_normal(size=16)
 self.prng.set_state(old_state)
 x2 = self.prng.standard_normal(size=16)
 self.prng.set_state(self.state)
 x3 = self.prng.standard_normal(size=16)
 assert_(np.all(x1 == x2))
 assert_(np.all(x1 == x3))
 
 def test_negative_binomial(self):
 # Ensure that the negative binomial results take floating point
 # arguments without truncation.
 self.prng.negative_binomial(0.5, 0.5)
 
 
 class TestRandint(TestCase):
 
 rfunc = np.random.randint
 
 # valid integer/boolean types
 itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
 np.int32, np.uint32, np.int64, np.uint64]
 
 def test_unsupported_type(self):
 assert_raises(TypeError, self.rfunc, 1, dtype=np.float)
 
 def test_bounds_checking(self):
 for dt in self.itype:
 lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
 ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
 assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
 assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
 assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
 assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
 
 def test_rng_zero_and_extremes(self):
 for dt in self.itype:
 lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
 ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
 
 tgt = ubnd - 1
 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
 
 tgt = lbnd
 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
 
 tgt = (lbnd + ubnd)//2
 assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
 
 def test_full_range(self):
 # Test for ticket #1690
 
 for dt in self.itype:
 lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
 ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
 
 try:
 self.rfunc(lbnd, ubnd, dtype=dt)
 except Exception as e:
 raise AssertionError("No error should have been raised, "
 "but one was with the following "
 "message:\n\n%s" % str(e))
 
 def test_in_bounds_fuzz(self):
 # Don't use fixed seed
 np.random.seed()
 
 for dt in self.itype[1:]:
 for ubnd in [4, 8, 16]:
 vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
 assert_(vals.max() < ubnd)
 assert_(vals.min() >= 2)
 
 vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_)
 
 assert_(vals.max() < 2)
 assert_(vals.min() >= 0)
 
 def test_repeatability(self):
 import hashlib
 # We use a md5 hash of generated sequences of 1000 samples
 # in the range [0, 6) for all but np.bool, where the range
 # is [0, 2). Hashes are for little endian numbers.
 tgt = {'bool': '7dd3170d7aa461d201a65f8bcf3944b0',
 'int16': '1b7741b80964bb190c50d541dca1cac1',
 'int32': '4dc9fcc2b395577ebb51793e58ed1a05',
 'int64': '17db902806f448331b5a758d7d2ee672',
 'int8': '27dd30c4e08a797063dffac2490b0be6',
 'uint16': '1b7741b80964bb190c50d541dca1cac1',
 'uint32': '4dc9fcc2b395577ebb51793e58ed1a05',
 'uint64': '17db902806f448331b5a758d7d2ee672',
 'uint8': '27dd30c4e08a797063dffac2490b0be6'}
 
 for dt in self.itype[1:]:
 np.random.seed(1234)
 
 # view as little endian for hash
 if sys.byteorder == 'little':
 val = self.rfunc(0, 6, size=1000, dtype=dt)
 else:
 val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
 
 res = hashlib.md5(val.view(np.int8)).hexdigest()
 assert_(tgt[np.dtype(dt).name] == res)
 
 # bools do not depend on endianess
 np.random.seed(1234)
 val = self.rfunc(0, 2, size=1000, dtype=np.bool).view(np.int8)
 res = hashlib.md5(val).hexdigest()
 assert_(tgt[np.dtype(np.bool).name] == res)
 
 def test_int64_uint64_corner_case(self):
 # When stored in Numpy arrays, `lbnd` is casted
 # as np.int64, and `ubnd` is casted as np.uint64.
 # Checking whether `lbnd` >= `ubnd` used to be
 # done solely via direct comparison, which is incorrect
 # because when Numpy tries to compare both numbers,
 # it casts both to np.float64 because there is
 # no integer superset of np.int64 and np.uint64. However,
 # `ubnd` is too large to be represented in np.float64,
 # causing it be round down to np.iinfo(np.int64).max,
 # leading to a ValueError because `lbnd` now equals
 # the new `ubnd`.
 
 dt = np.int64
 tgt = np.iinfo(np.int64).max
 lbnd = np.int64(np.iinfo(np.int64).max)
 ubnd = np.uint64(np.iinfo(np.int64).max + 1)
 
 # None of these function calls should
 # generate a ValueError now.
 actual = np.random.randint(lbnd, ubnd, dtype=dt)
 assert_equal(actual, tgt)
 
 def test_respect_dtype_singleton(self):
 # See gh-7203
 for dt in self.itype:
 lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
 ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
 
 sample = self.rfunc(lbnd, ubnd, dtype=dt)
 self.assertEqual(sample.dtype, np.dtype(dt))
 
 for dt in (np.bool, np.int, np.long):
 lbnd = 0 if dt is np.bool else np.iinfo(dt).min
 ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
 
 # gh-7284: Ensure that we get Python data types
 sample = self.rfunc(lbnd, ubnd, dtype=dt)
 self.assertFalse(hasattr(sample, 'dtype'))
 self.assertEqual(type(sample), dt)
 
 
 class TestRandomDist(TestCase):
 # Make sure the random distribution returns the correct value for a
 # given seed
 
 def setUp(self):
 self.seed = 1234567890
 
 def test_rand(self):
 np.random.seed(self.seed)
 actual = np.random.rand(3, 2)
 desired = np.array([[0.61879477158567997, 0.59162362775974664],
 [0.88868358904449662, 0.89165480011560816],
 [0.4575674820298663, 0.7781880808593471]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_randn(self):
 np.random.seed(self.seed)
 actual = np.random.randn(3, 2)
 desired = np.array([[1.34016345771863121, 1.73759122771936081],
 [1.498988344300628, -0.2286433324536169],
 [2.031033998682787, 2.17032494605655257]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_randint(self):
 np.random.seed(self.seed)
 actual = np.random.randint(-99, 99, size=(3, 2))
 desired = np.array([[31, 3],
 [-52, 41],
 [-48, -66]])
 assert_array_equal(actual, desired)
 
 def test_random_integers(self):
 np.random.seed(self.seed)
 with suppress_warnings() as sup:
 w = sup.record(DeprecationWarning)
 actual = np.random.random_integers(-99, 99, size=(3, 2))
 assert_(len(w) == 1)
 desired = np.array([[31, 3],
 [-52, 41],
 [-48, -66]])
 assert_array_equal(actual, desired)
 
 def test_random_integers_max_int(self):
 # Tests whether random_integers can generate the
 # maximum allowed Python int that can be converted
 # into a C long. Previous implementations of this
 # method have thrown an OverflowError when attempting
 # to generate this integer.
 with suppress_warnings() as sup:
 w = sup.record(DeprecationWarning)
 actual = np.random.random_integers(np.iinfo('l').max,
 np.iinfo('l').max)
 assert_(len(w) == 1)
 
 desired = np.iinfo('l').max
 assert_equal(actual, desired)
 
 def test_random_integers_deprecated(self):
 with warnings.catch_warnings():
 warnings.simplefilter("error", DeprecationWarning)
 
 # DeprecationWarning raised with high == None
 assert_raises(DeprecationWarning,
 np.random.random_integers,
 np.iinfo('l').max)
 
 # DeprecationWarning raised with high != None
 assert_raises(DeprecationWarning,
 np.random.random_integers,
 np.iinfo('l').max, np.iinfo('l').max)
 
 def test_random_sample(self):
 np.random.seed(self.seed)
 actual = np.random.random_sample((3, 2))
 desired = np.array([[0.61879477158567997, 0.59162362775974664],
 [0.88868358904449662, 0.89165480011560816],
 [0.4575674820298663, 0.7781880808593471]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_choice_uniform_replace(self):
 np.random.seed(self.seed)
 actual = np.random.choice(4, 4)
 desired = np.array([2, 3, 2, 3])
 assert_array_equal(actual, desired)
 
 def test_choice_nonuniform_replace(self):
 np.random.seed(self.seed)
 actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
 desired = np.array([1, 1, 2, 2])
 assert_array_equal(actual, desired)
 
 def test_choice_uniform_noreplace(self):
 np.random.seed(self.seed)
 actual = np.random.choice(4, 3, replace=False)
 desired = np.array([0, 1, 3])
 assert_array_equal(actual, desired)
 
 def test_choice_nonuniform_noreplace(self):
 np.random.seed(self.seed)
 actual = np.random.choice(4, 3, replace=False,
 p=[0.1, 0.3, 0.5, 0.1])
 desired = np.array([2, 3, 1])
 assert_array_equal(actual, desired)
 
 def test_choice_noninteger(self):
 np.random.seed(self.seed)
 actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
 desired = np.array(['c', 'd', 'c', 'd'])
 assert_array_equal(actual, desired)
 
 def test_choice_exceptions(self):
 sample = np.random.choice
 assert_raises(ValueError, sample, -1, 3)
 assert_raises(ValueError, sample, 3., 3)
 assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
 assert_raises(ValueError, sample, [], 3)
 assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
 p=[[0.25, 0.25], [0.25, 0.25]])
 assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
 assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
 assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
 assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
 assert_raises(ValueError, sample, [1, 2, 3], 2,
 replace=False, p=[1, 0, 0])
 
 def test_choice_return_shape(self):
 p = [0.1, 0.9]
 # Check scalar
 assert_(np.isscalar(np.random.choice(2, replace=True)))
 assert_(np.isscalar(np.random.choice(2, replace=False)))
 assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
 assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
 assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
 assert_(np.random.choice([None], replace=True) is None)
 a = np.array([1, 2])
 arr = np.empty(1, dtype=object)
 arr[0] = a
 assert_(np.random.choice(arr, replace=True) is a)
 
 # Check 0-d array
 s = tuple()
 assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
 assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
 assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
 assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
 assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
 assert_(np.random.choice([None], s, replace=True).ndim == 0)
 a = np.array([1, 2])
 arr = np.empty(1, dtype=object)
 arr[0] = a
 assert_(np.random.choice(arr, s, replace=True).item() is a)
 
 # Check multi dimensional array
 s = (2, 3)
 p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
 assert_equal(np.random.choice(6, s, replace=True).shape, s)
 assert_equal(np.random.choice(6, s, replace=False).shape, s)
 assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s)
 assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s)
 assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s)
 
 def test_bytes(self):
 np.random.seed(self.seed)
 actual = np.random.bytes(10)
 desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
 assert_equal(actual, desired)
 
 def test_shuffle(self):
 # Test lists, arrays (of various dtypes), and multidimensional versions
 # of both, c-contiguous or not:
 for conv in [lambda x: np.array([]),
 lambda x: x,
 lambda x: np.asarray(x).astype(np.int8),
 lambda x: np.asarray(x).astype(np.float32),
 lambda x: np.asarray(x).astype(np.complex64),
 lambda x: np.asarray(x).astype(object),
 lambda x: [(i, i) for i in x],
 lambda x: np.asarray([[i, i] for i in x]),
 lambda x: np.vstack([x, x]).T,
 # gh-4270
 lambda x: np.asarray([(i, i) for i in x],
 [("a", object, 1),
 ("b", np.int32, 1)])]:
 np.random.seed(self.seed)
 alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
 np.random.shuffle(alist)
 actual = alist
 desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
 assert_array_equal(actual, desired)
 
 def test_shuffle_masked(self):
 # gh-3263
 a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
 b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
 a_orig = a.copy()
 b_orig = b.copy()
 for i in range(50):
 np.random.shuffle(a)
 assert_equal(
 sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
 np.random.shuffle(b)
 assert_equal(
 sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
 
 def test_beta(self):
 np.random.seed(self.seed)
 actual = np.random.beta(.1, .9, size=(3, 2))
 desired = np.array(
 [[1.45341850513746058e-02, 5.31297615662868145e-04],
 [1.85366619058432324e-06, 4.19214516800110563e-03],
 [1.58405155108498093e-04, 1.26252891949397652e-04]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_binomial(self):
 np.random.seed(self.seed)
 actual = np.random.binomial(100.123, .456, size=(3, 2))
 desired = np.array([[37, 43],
 [42, 48],
 [46, 45]])
 assert_array_equal(actual, desired)
 
 def test_chisquare(self):
 np.random.seed(self.seed)
 actual = np.random.chisquare(50, size=(3, 2))
 desired = np.array([[63.87858175501090585, 68.68407748911370447],
 [65.77116116901505904, 47.09686762438974483],
 [72.3828403199695174, 74.18408615260374006]])
 assert_array_almost_equal(actual, desired, decimal=13)
 
 def test_dirichlet(self):
 np.random.seed(self.seed)
 alpha = np.array([51.72840233779265162, 39.74494232180943953])
 actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
 desired = np.array([[[0.54539444573611562, 0.45460555426388438],
 [0.62345816822039413, 0.37654183177960598]],
 [[0.55206000085785778, 0.44793999914214233],
 [0.58964023305154301, 0.41035976694845688]],
 [[0.59266909280647828, 0.40733090719352177],
 [0.56974431743975207, 0.43025568256024799]]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_dirichlet_size(self):
 # gh-3173
 p = np.array([51.72840233779265162, 39.74494232180943953])
 assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
 assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
 assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
 assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
 assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
 assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
 
 assert_raises(TypeError, np.random.dirichlet, p, np.float(1))
 
 def test_exponential(self):
 np.random.seed(self.seed)
 actual = np.random.exponential(1.1234, size=(3, 2))
 desired = np.array([[1.08342649775011624, 1.00607889924557314],
 [2.46628830085216721, 2.49668106809923884],
 [0.68717433461363442, 1.69175666993575979]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_exponential_0(self):
 assert_equal(np.random.exponential(scale=0), 0)
 assert_raises(ValueError, np.random.exponential, scale=-0.)
 
 def test_f(self):
 np.random.seed(self.seed)
 actual = np.random.f(12, 77, size=(3, 2))
 desired = np.array([[1.21975394418575878, 1.75135759791559775],
 [1.44803115017146489, 1.22108959480396262],
 [1.02176975757740629, 1.34431827623300415]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_gamma(self):
 np.random.seed(self.seed)
 actual = np.random.gamma(5, 3, size=(3, 2))
 desired = np.array([[24.60509188649287182, 28.54993563207210627],
 [26.13476110204064184, 12.56988482927716078],
 [31.71863275789960568, 33.30143302795922011]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_gamma_0(self):
 assert_equal(np.random.gamma(shape=0, scale=0), 0)
 assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)
 
 def test_geometric(self):
 np.random.seed(self.seed)
 actual = np.random.geometric(.123456789, size=(3, 2))
 desired = np.array([[8, 7],
 [17, 17],
 [5, 12]])
 assert_array_equal(actual, desired)
 
 def test_gumbel(self):
 np.random.seed(self.seed)
 actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[0.19591898743416816, 0.34405539668096674],
 [-1.4492522252274278, -1.47374816298446865],
 [1.10651090478803416, -0.69535848626236174]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_gumbel_0(self):
 assert_equal(np.random.gumbel(scale=0), 0)
 assert_raises(ValueError, np.random.gumbel, scale=-0.)
 
 def test_hypergeometric(self):
 np.random.seed(self.seed)
 actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
 desired = np.array([[10, 10],
 [10, 10],
 [9, 9]])
 assert_array_equal(actual, desired)
 
 # Test nbad = 0
 actual = np.random.hypergeometric(5, 0, 3, size=4)
 desired = np.array([3, 3, 3, 3])
 assert_array_equal(actual, desired)
 
 actual = np.random.hypergeometric(15, 0, 12, size=4)
 desired = np.array([12, 12, 12, 12])
 assert_array_equal(actual, desired)
 
 # Test ngood = 0
 actual = np.random.hypergeometric(0, 5, 3, size=4)
 desired = np.array([0, 0, 0, 0])
 assert_array_equal(actual, desired)
 
 actual = np.random.hypergeometric(0, 15, 12, size=4)
 desired = np.array([0, 0, 0, 0])
 assert_array_equal(actual, desired)
 
 def test_laplace(self):
 np.random.seed(self.seed)
 actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[0.66599721112760157, 0.52829452552221945],
 [3.12791959514407125, 3.18202813572992005],
 [-0.05391065675859356, 1.74901336242837324]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_laplace_0(self):
 assert_equal(np.random.laplace(scale=0), 0)
 assert_raises(ValueError, np.random.laplace, scale=-0.)
 
 def test_logistic(self):
 np.random.seed(self.seed)
 actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[1.09232835305011444, 0.8648196662399954],
 [4.27818590694950185, 4.33897006346929714],
 [-0.21682183359214885, 2.63373365386060332]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_lognormal(self):
 np.random.seed(self.seed)
 actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
 desired = np.array([[16.50698631688883822, 36.54846706092654784],
 [22.67886599981281748, 0.71617561058995771],
 [65.72798501792723869, 86.84341601437161273]])
 assert_array_almost_equal(actual, desired, decimal=13)
 
 def test_lognormal_0(self):
 assert_equal(np.random.lognormal(sigma=0), 1)
 assert_raises(ValueError, np.random.lognormal, sigma=-0.)
 
 def test_logseries(self):
 np.random.seed(self.seed)
 actual = np.random.logseries(p=.923456789, size=(3, 2))
 desired = np.array([[2, 2],
 [6, 17],
 [3, 6]])
 assert_array_equal(actual, desired)
 
 def test_multinomial(self):
 np.random.seed(self.seed)
 actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
 desired = np.array([[[4, 3, 5, 4, 2, 2],
 [5, 2, 8, 2, 2, 1]],
 [[3, 4, 3, 6, 0, 4],
 [2, 1, 4, 3, 6, 4]],
 [[4, 4, 2, 5, 2, 3],
 [4, 3, 4, 2, 3, 4]]])
 assert_array_equal(actual, desired)
 
 def test_multivariate_normal(self):
 np.random.seed(self.seed)
 mean = (.123456789, 10)
 cov = [[1, 0], [0, 1]]
 size = (3, 2)
 actual = np.random.multivariate_normal(mean, cov, size)
 desired = np.array([[[1.463620246718631, 11.73759122771936 ],
 [1.622445133300628, 9.771356667546383]],
 [[2.154490787682787, 12.170324946056553],
 [1.719909438201865, 9.230548443648306]],
 [[0.689515026297799, 9.880729819607714],
 [-0.023054015651998, 9.201096623542879]]])
 
 assert_array_almost_equal(actual, desired, decimal=15)
 
 # Check for default size, was raising deprecation warning
 actual = np.random.multivariate_normal(mean, cov)
 desired = np.array([0.895289569463708, 9.17180864067987])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 # Check that non positive-semidefinite covariance warns with
 # RuntimeWarning
 mean = [0, 0]
 cov = [[1, 2], [2, 1]]
 assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)
 
 # and that it doesn't warn with RuntimeWarning check_valid='ignore'
 assert_no_warnings(np.random.multivariate_normal, mean, cov,
 check_valid='ignore')
 
 # and that it raises with RuntimeWarning check_valid='raises'
 assert_raises(ValueError, np.random.multivariate_normal, mean, cov,
 check_valid='raise')
 
 def test_negative_binomial(self):
 np.random.seed(self.seed)
 actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
 desired = np.array([[848, 841],
 [892, 611],
 [779, 647]])
 assert_array_equal(actual, desired)
 
 def test_noncentral_chisquare(self):
 np.random.seed(self.seed)
 actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
 desired = np.array([[23.91905354498517511, 13.35324692733826346],
 [31.22452661329736401, 16.60047399466177254],
 [5.03461598262724586, 17.94973089023519464]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
 desired = np.array([[1.47145377828516666,  0.15052899268012659],
 [0.00943803056963588,  1.02647251615666169],
 [0.332334982684171,  0.15451287602753125]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 np.random.seed(self.seed)
 actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
 desired = np.array([[9.597154162763948, 11.725484450296079],
 [10.413711048138335, 3.694475922923986],
 [13.484222138963087, 14.377255424602957]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_noncentral_f(self):
 np.random.seed(self.seed)
 actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
 size=(3, 2))
 desired = np.array([[1.40598099674926669, 0.34207973179285761],
 [3.57715069265772545, 7.92632662577829805],
 [0.43741599463544162, 1.1774208752428319]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_normal(self):
 np.random.seed(self.seed)
 actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
 desired = np.array([[2.80378370443726244, 3.59863924443872163],
 [3.121433477601256, -0.33382987590723379],
 [4.18552478636557357, 4.46410668111310471]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_normal_0(self):
 assert_equal(np.random.normal(scale=0), 0)
 assert_raises(ValueError, np.random.normal, scale=-0.)
 
 def test_pareto(self):
 np.random.seed(self.seed)
 actual = np.random.pareto(a=.123456789, size=(3, 2))
 desired = np.array(
 [[2.46852460439034849e+03, 1.41286880810518346e+03],
 [5.28287797029485181e+07, 6.57720981047328785e+07],
 [1.40840323350391515e+02, 1.98390255135251704e+05]])
 # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
 # matrix differs by 24 nulps. Discussion:
 #   http://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
 # Consensus is that this is probably some gcc quirk that affects
 # rounding but not in any important way, so we just use a looser
 # tolerance on this test:
 np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
 
 def test_poisson(self):
 np.random.seed(self.seed)
 actual = np.random.poisson(lam=.123456789, size=(3, 2))
 desired = np.array([[0, 0],
 [1, 0],
 [0, 0]])
 assert_array_equal(actual, desired)
 
 def test_poisson_exceptions(self):
 lambig = np.iinfo('l').max
 lamneg = -1
 assert_raises(ValueError, np.random.poisson, lamneg)
 assert_raises(ValueError, np.random.poisson, [lamneg]*10)
 assert_raises(ValueError, np.random.poisson, lambig)
 assert_raises(ValueError, np.random.poisson, [lambig]*10)
 
 def test_power(self):
 np.random.seed(self.seed)
 actual = np.random.power(a=.123456789, size=(3, 2))
 desired = np.array([[0.02048932883240791, 0.01424192241128213],
 [0.38446073748535298, 0.39499689943484395],
 [0.00177699707563439, 0.13115505880863756]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_rayleigh(self):
 np.random.seed(self.seed)
 actual = np.random.rayleigh(scale=10, size=(3, 2))
 desired = np.array([[13.8882496494248393, 13.383318339044731],
 [20.95413364294492098, 21.08285015800712614],
 [11.06066537006854311, 17.35468505778271009]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_rayleigh_0(self):
 assert_equal(np.random.rayleigh(scale=0), 0)
 assert_raises(ValueError, np.random.rayleigh, scale=-0.)
 
 def test_standard_cauchy(self):
 np.random.seed(self.seed)
 actual = np.random.standard_cauchy(size=(3, 2))
 desired = np.array([[0.77127660196445336, -6.55601161955910605],
 [0.93582023391158309, -2.07479293013759447],
 [-4.74601644297011926, 0.18338989290760804]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_standard_exponential(self):
 np.random.seed(self.seed)
 actual = np.random.standard_exponential(size=(3, 2))
 desired = np.array([[0.96441739162374596, 0.89556604882105506],
 [2.1953785836319808, 2.22243285392490542],
 [0.6116915921431676, 1.50592546727413201]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_standard_gamma(self):
 np.random.seed(self.seed)
 actual = np.random.standard_gamma(shape=3, size=(3, 2))
 desired = np.array([[5.50841531318455058, 6.62953470301903103],
 [5.93988484943779227, 2.31044849402133989],
 [7.54838614231317084, 8.012756093271868]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_standard_gamma_0(self):
 assert_equal(np.random.standard_gamma(shape=0), 0)
 assert_raises(ValueError, np.random.standard_gamma, shape=-0.)
 
 def test_standard_normal(self):
 np.random.seed(self.seed)
 actual = np.random.standard_normal(size=(3, 2))
 desired = np.array([[1.34016345771863121, 1.73759122771936081],
 [1.498988344300628, -0.2286433324536169],
 [2.031033998682787, 2.17032494605655257]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_standard_t(self):
 np.random.seed(self.seed)
 actual = np.random.standard_t(df=10, size=(3, 2))
 desired = np.array([[0.97140611862659965, -0.08830486548450577],
 [1.36311143689505321, -0.55317463909867071],
 [-0.18473749069684214, 0.61181537341755321]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_triangular(self):
 np.random.seed(self.seed)
 actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
 size=(3, 2))
 desired = np.array([[12.68117178949215784, 12.4129206149193152],
 [16.20131377335158263, 16.25692138747600524],
 [11.20400690911820263, 14.4978144835829923]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_uniform(self):
 np.random.seed(self.seed)
 actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
 desired = np.array([[6.99097932346268003, 6.73801597444323974],
 [9.50364421400426274, 9.53130618907631089],
 [5.48995325769805476, 8.47493103280052118]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_uniform_range_bounds(self):
 fmin = np.finfo('float').min
 fmax = np.finfo('float').max
 
 func = np.random.uniform
 assert_raises(OverflowError, func, -np.inf, 0)
 assert_raises(OverflowError, func,  0,      np.inf)
 assert_raises(OverflowError, func,  fmin,   fmax)
 assert_raises(OverflowError, func, [-np.inf], [0])
 assert_raises(OverflowError, func, [0], [np.inf])
 
 # (fmax / 1e17) - fmin is within range, so this should not throw
 # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
 # DBL_MAX by increasing fmin a bit
 np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
 
 def test_scalar_exception_propagation(self):
 # Tests that exceptions are correctly propagated in distributions
 # when called with objects that throw exceptions when converted to
 # scalars.
 #
 # Regression test for gh: 8865
 
 class ThrowingFloat(np.ndarray):
 def __float__(self):
 raise TypeError
 
 throwing_float = np.array(1.0).view(ThrowingFloat)
 assert_raises(TypeError, np.random.uniform, throwing_float, throwing_float)
 
 class ThrowingInteger(np.ndarray):
 def __int__(self):
 raise TypeError
 
 throwing_int = np.array(1).view(ThrowingInteger)
 assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1)
 
 def test_vonmises(self):
 np.random.seed(self.seed)
 actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
 desired = np.array([[2.28567572673902042, 2.89163838442285037],
 [0.38198375564286025, 2.57638023113890746],
 [1.19153771588353052, 1.83509849681825354]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_vonmises_small(self):
 # check infinite loop, gh-4720
 np.random.seed(self.seed)
 r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
 np.testing.assert_(np.isfinite(r).all())
 
 def test_wald(self):
 np.random.seed(self.seed)
 actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
 desired = np.array([[3.82935265715889983, 5.13125249184285526],
 [0.35045403618358717, 1.50832396872003538],
 [0.24124319895843183, 0.22031101461955038]])
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_weibull(self):
 np.random.seed(self.seed)
 actual = np.random.weibull(a=1.23, size=(3, 2))
 desired = np.array([[0.97097342648766727, 0.91422896443565516],
 [1.89517770034962929, 1.91414357960479564],
 [0.67057783752390987, 1.39494046635066793]])
 assert_array_almost_equal(actual, desired, decimal=15)
 
 def test_weibull_0(self):
 assert_equal(np.random.weibull(a=0), 0)
 assert_raises(ValueError, np.random.weibull, a=-0.)
 
 def test_zipf(self):
 np.random.seed(self.seed)
 actual = np.random.zipf(a=1.23, size=(3, 2))
 desired = np.array([[66, 29],
 [1, 1],
 [3, 13]])
 assert_array_equal(actual, desired)
 
 
 class TestBroadcast(TestCase):
 # tests that functions that broadcast behave
 # correctly when presented with non-scalar arguments
 def setUp(self):
 self.seed = 123456789
 
 def setSeed(self):
 np.random.seed(self.seed)
 
 # TODO: Include test for randint once it can broadcast
 # Can steal the test written in PR #6938
 
 def test_uniform(self):
 low = [0]
 high = [1]
 uniform = np.random.uniform
 desired = np.array([0.53283302478975902,
 0.53413660089041659,
 0.50955303552646702])
 
 self.setSeed()
 actual = uniform(low * 3, high)
 assert_array_almost_equal(actual, desired, decimal=14)
 
 self.setSeed()
 actual = uniform(low, high * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 
 def test_normal(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 normal = np.random.normal
 desired = np.array([2.2129019979039612,
 2.1283977976520019,
 1.8417114045748335])
 
 self.setSeed()
 actual = normal(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, normal, loc * 3, bad_scale)
 
 self.setSeed()
 actual = normal(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, normal, loc, bad_scale * 3)
 
 def test_beta(self):
 a = [1]
 b = [2]
 bad_a = [-1]
 bad_b = [-2]
 beta = np.random.beta
 desired = np.array([0.19843558305989056,
 0.075230336409423643,
 0.24976865978980844])
 
 self.setSeed()
 actual = beta(a * 3, b)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, beta, bad_a * 3, b)
 assert_raises(ValueError, beta, a * 3, bad_b)
 
 self.setSeed()
 actual = beta(a, b * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, beta, bad_a, b * 3)
 assert_raises(ValueError, beta, a, bad_b * 3)
 
 def test_exponential(self):
 scale = [1]
 bad_scale = [-1]
 exponential = np.random.exponential
 desired = np.array([0.76106853658845242,
 0.76386282278691653,
 0.71243813125891797])
 
 self.setSeed()
 actual = exponential(scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, exponential, bad_scale * 3)
 
 def test_standard_gamma(self):
 shape = [1]
 bad_shape = [-1]
 std_gamma = np.random.standard_gamma
 desired = np.array([0.76106853658845242,
 0.76386282278691653,
 0.71243813125891797])
 
 self.setSeed()
 actual = std_gamma(shape * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, std_gamma, bad_shape * 3)
 
 def test_gamma(self):
 shape = [1]
 scale = [2]
 bad_shape = [-1]
 bad_scale = [-2]
 gamma = np.random.gamma
 desired = np.array([1.5221370731769048,
 1.5277256455738331,
 1.4248762625178359])
 
 self.setSeed()
 actual = gamma(shape * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gamma, bad_shape * 3, scale)
 assert_raises(ValueError, gamma, shape * 3, bad_scale)
 
 self.setSeed()
 actual = gamma(shape, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gamma, bad_shape, scale * 3)
 assert_raises(ValueError, gamma, shape, bad_scale * 3)
 
 def test_f(self):
 dfnum = [1]
 dfden = [2]
 bad_dfnum = [-1]
 bad_dfden = [-2]
 f = np.random.f
 desired = np.array([0.80038951638264799,
 0.86768719635363512,
 2.7251095168386801])
 
 self.setSeed()
 actual = f(dfnum * 3, dfden)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, f, bad_dfnum * 3, dfden)
 assert_raises(ValueError, f, dfnum * 3, bad_dfden)
 
 self.setSeed()
 actual = f(dfnum, dfden * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, f, bad_dfnum, dfden * 3)
 assert_raises(ValueError, f, dfnum, bad_dfden * 3)
 
 def test_noncentral_f(self):
 dfnum = [2]
 dfden = [3]
 nonc = [4]
 bad_dfnum = [0]
 bad_dfden = [-1]
 bad_nonc = [-2]
 nonc_f = np.random.noncentral_f
 desired = np.array([9.1393943263705211,
 13.025456344595602,
 8.8018098359100545])
 
 self.setSeed()
 actual = nonc_f(dfnum * 3, dfden, nonc)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
 assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
 assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
 
 self.setSeed()
 actual = nonc_f(dfnum, dfden * 3, nonc)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
 assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
 assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
 
 self.setSeed()
 actual = nonc_f(dfnum, dfden, nonc * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
 assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
 assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
 
 def test_chisquare(self):
 df = [1]
 bad_df = [-1]
 chisquare = np.random.chisquare
 desired = np.array([0.57022801133088286,
 0.51947702108840776,
 0.1320969254923558])
 
 self.setSeed()
 actual = chisquare(df * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, chisquare, bad_df * 3)
 
 def test_noncentral_chisquare(self):
 df = [1]
 nonc = [2]
 bad_df = [-1]
 bad_nonc = [-2]
 nonc_chi = np.random.noncentral_chisquare
 desired = np.array([9.0015599467913763,
 4.5804135049718742,
 6.0872302432834564])
 
 self.setSeed()
 actual = nonc_chi(df * 3, nonc)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
 assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
 
 self.setSeed()
 actual = nonc_chi(df, nonc * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
 assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
 
 def test_standard_t(self):
 df = [1]
 bad_df = [-1]
 t = np.random.standard_t
 desired = np.array([3.0702872575217643,
 5.8560725167361607,
 1.0274791436474273])
 
 self.setSeed()
 actual = t(df * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, t, bad_df * 3)
 
 def test_vonmises(self):
 mu = [2]
 kappa = [1]
 bad_kappa = [-1]
 vonmises = np.random.vonmises
 desired = np.array([2.9883443664201312,
 -2.7064099483995943,
 -1.8672476700665914])
 
 self.setSeed()
 actual = vonmises(mu * 3, kappa)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
 
 self.setSeed()
 actual = vonmises(mu, kappa * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
 
 def test_pareto(self):
 a = [1]
 bad_a = [-1]
 pareto = np.random.pareto
 desired = np.array([1.1405622680198362,
 1.1465519762044529,
 1.0389564467453547])
 
 self.setSeed()
 actual = pareto(a * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, pareto, bad_a * 3)
 
 def test_weibull(self):
 a = [1]
 bad_a = [-1]
 weibull = np.random.weibull
 desired = np.array([0.76106853658845242,
 0.76386282278691653,
 0.71243813125891797])
 
 self.setSeed()
 actual = weibull(a * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, weibull, bad_a * 3)
 
 def test_power(self):
 a = [1]
 bad_a = [-1]
 power = np.random.power
 desired = np.array([0.53283302478975902,
 0.53413660089041659,
 0.50955303552646702])
 
 self.setSeed()
 actual = power(a * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, power, bad_a * 3)
 
 def test_laplace(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 laplace = np.random.laplace
 desired = np.array([0.067921356028507157,
 0.070715642226971326,
 0.019290950698972624])
 
 self.setSeed()
 actual = laplace(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, laplace, loc * 3, bad_scale)
 
 self.setSeed()
 actual = laplace(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, laplace, loc, bad_scale * 3)
 
 def test_gumbel(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 gumbel = np.random.gumbel
 desired = np.array([0.2730318639556768,
 0.26936705726291116,
 0.33906220393037939])
 
 self.setSeed()
 actual = gumbel(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gumbel, loc * 3, bad_scale)
 
 self.setSeed()
 actual = gumbel(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, gumbel, loc, bad_scale * 3)
 
 def test_logistic(self):
 loc = [0]
 scale = [1]
 bad_scale = [-1]
 logistic = np.random.logistic
 desired = np.array([0.13152135837586171,
 0.13675915696285773,
 0.038216792802833396])
 
 self.setSeed()
 actual = logistic(loc * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, logistic, loc * 3, bad_scale)
 
 self.setSeed()
 actual = logistic(loc, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, logistic, loc, bad_scale * 3)
 
 def test_lognormal(self):
 mean = [0]
 sigma = [1]
 bad_sigma = [-1]
 lognormal = np.random.lognormal
 desired = np.array([9.1422086044848427,
 8.4013952870126261,
 6.3073234116578671])
 
 self.setSeed()
 actual = lognormal(mean * 3, sigma)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
 
 self.setSeed()
 actual = lognormal(mean, sigma * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
 
 def test_rayleigh(self):
 scale = [1]
 bad_scale = [-1]
 rayleigh = np.random.rayleigh
 desired = np.array([1.2337491937897689,
 1.2360119924878694,
 1.1936818095781789])
 
 self.setSeed()
 actual = rayleigh(scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, rayleigh, bad_scale * 3)
 
 def test_wald(self):
 mean = [0.5]
 scale = [1]
 bad_mean = [0]
 bad_scale = [-2]
 wald = np.random.wald
 desired = np.array([0.11873681120271318,
 0.12450084820795027,
 0.9096122728408238])
 
 self.setSeed()
 actual = wald(mean * 3, scale)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, wald, bad_mean * 3, scale)
 assert_raises(ValueError, wald, mean * 3, bad_scale)
 
 self.setSeed()
 actual = wald(mean, scale * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, wald, bad_mean, scale * 3)
 assert_raises(ValueError, wald, mean, bad_scale * 3)
 
 def test_triangular(self):
 left = [1]
 right = [3]
 mode = [2]
 bad_left_one = [3]
 bad_mode_one = [4]
 bad_left_two, bad_mode_two = right * 2
 triangular = np.random.triangular
 desired = np.array([2.03339048710429,
 2.0347400359389356,
 2.0095991069536208])
 
 self.setSeed()
 actual = triangular(left * 3, mode, right)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
 assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
 assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, right)
 
 self.setSeed()
 actual = triangular(left, mode * 3, right)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
 assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
 assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, right)
 
 self.setSeed()
 actual = triangular(left, mode, right * 3)
 assert_array_almost_equal(actual, desired, decimal=14)
 assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
 assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
 assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, right * 3)
 
 def test_binomial(self):
 n = [1]
 p = [0.5]
 bad_n = [-1]
 bad_p_one = [-1]
 bad_p_two = [1.5]
 binom = np.random.binomial
 desired = np.array([1, 1, 1])
 
 self.setSeed()
 actual = binom(n * 3, p)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, binom, bad_n * 3, p)
 assert_raises(ValueError, binom, n * 3, bad_p_one)
 assert_raises(ValueError, binom, n * 3, bad_p_two)
 
 self.setSeed()
 actual = binom(n, p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, binom, bad_n, p * 3)
 assert_raises(ValueError, binom, n, bad_p_one * 3)
 assert_raises(ValueError, binom, n, bad_p_two * 3)
 
 def test_negative_binomial(self):
 n = [1]
 p = [0.5]
 bad_n = [-1]
 bad_p_one = [-1]
 bad_p_two = [1.5]
 neg_binom = np.random.negative_binomial
 desired = np.array([1, 0, 1])
 
 self.setSeed()
 actual = neg_binom(n * 3, p)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, neg_binom, bad_n * 3, p)
 assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
 assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
 
 self.setSeed()
 actual = neg_binom(n, p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, neg_binom, bad_n, p * 3)
 assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
 assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
 
 def test_poisson(self):
 max_lam = np.random.RandomState().poisson_lam_max
 
 lam = [1]
 bad_lam_one = [-1]
 bad_lam_two = [max_lam * 2]
 poisson = np.random.poisson
 desired = np.array([1, 1, 0])
 
 self.setSeed()
 actual = poisson(lam * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, poisson, bad_lam_one * 3)
 assert_raises(ValueError, poisson, bad_lam_two * 3)
 
 def test_zipf(self):
 a = [2]
 bad_a = [0]
 zipf = np.random.zipf
 desired = np.array([2, 2, 1])
 
 self.setSeed()
 actual = zipf(a * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, zipf, bad_a * 3)
 
 def test_geometric(self):
 p = [0.5]
 bad_p_one = [-1]
 bad_p_two = [1.5]
 geom = np.random.geometric
 desired = np.array([2, 2, 2])
 
 self.setSeed()
 actual = geom(p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, geom, bad_p_one * 3)
 assert_raises(ValueError, geom, bad_p_two * 3)
 
 def test_hypergeometric(self):
 ngood = [1]
 nbad = [2]
 nsample = [2]
 bad_ngood = [-1]
 bad_nbad = [-2]
 bad_nsample_one = [0]
 bad_nsample_two = [4]
 hypergeom = np.random.hypergeometric
 desired = np.array([1, 1, 1])
 
 self.setSeed()
 actual = hypergeom(ngood * 3, nbad, nsample)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
 assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
 assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
 assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
 
 self.setSeed()
 actual = hypergeom(ngood, nbad * 3, nsample)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
 assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
 assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
 assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
 
 self.setSeed()
 actual = hypergeom(ngood, nbad, nsample * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
 assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
 assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
 assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
 
 def test_logseries(self):
 p = [0.5]
 bad_p_one = [2]
 bad_p_two = [-1]
 logseries = np.random.logseries
 desired = np.array([1, 1, 1])
 
 self.setSeed()
 actual = logseries(p * 3)
 assert_array_equal(actual, desired)
 assert_raises(ValueError, logseries, bad_p_one * 3)
 assert_raises(ValueError, logseries, bad_p_two * 3)
 
 class TestThread(TestCase):
 # make sure each state produces the same sequence even in threads
 def setUp(self):
 self.seeds = range(4)
 
 def check_function(self, function, sz):
 from threading import Thread
 
 out1 = np.empty((len(self.seeds),) + sz)
 out2 = np.empty((len(self.seeds),) + sz)
 
 # threaded generation
 t = [Thread(target=function, args=(np.random.RandomState(s), o))
 for s, o in zip(self.seeds, out1)]
 [x.start() for x in t]
 [x.join() for x in t]
 
 # the same serial
 for s, o in zip(self.seeds, out2):
 function(np.random.RandomState(s), o)
 
 # these platforms change x87 fpu precision mode in threads
 if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
 assert_array_almost_equal(out1, out2)
 else:
 assert_array_equal(out1, out2)
 
 def test_normal(self):
 def gen_random(state, out):
 out[...] = state.normal(size=10000)
 self.check_function(gen_random, sz=(10000,))
 
 def test_exp(self):
 def gen_random(state, out):
 out[...] = state.exponential(scale=np.ones((100, 1000)))
 self.check_function(gen_random, sz=(100, 1000))
 
 def test_multinomial(self):
 def gen_random(state, out):
 out[...] = state.multinomial(10, [1/6.]*6, size=10000)
 self.check_function(gen_random, sz=(10000, 6))
 
 # See Issue #4263
 class TestSingleEltArrayInput(TestCase):
 def setUp(self):
 self.argOne = np.array([2])
 self.argTwo = np.array([3])
 self.argThree = np.array([4])
 self.tgtShape = (1,)
 
 def test_one_arg_funcs(self):
 funcs = (np.random.exponential, np.random.standard_gamma,
 np.random.chisquare, np.random.standard_t,
 np.random.pareto, np.random.weibull,
 np.random.power, np.random.rayleigh,
 np.random.poisson, np.random.zipf,
 np.random.geometric, np.random.logseries)
 
 probfuncs = (np.random.geometric, np.random.logseries)
 
 for func in funcs:
 if func in probfuncs:  # p < 1.0
 out = func(np.array([0.5]))
 
 else:
 out = func(self.argOne)
 
 self.assertEqual(out.shape, self.tgtShape)
 
 def test_two_arg_funcs(self):
 funcs = (np.random.uniform, np.random.normal,
 np.random.beta, np.random.gamma,
 np.random.f, np.random.noncentral_chisquare,
 np.random.vonmises, np.random.laplace,
 np.random.gumbel, np.random.logistic,
 np.random.lognormal, np.random.wald,
 np.random.binomial, np.random.negative_binomial)
 
 probfuncs = (np.random.binomial, np.random.negative_binomial)
 
 for func in funcs:
 if func in probfuncs:  # p <= 1
 argTwo = np.array([0.5])
 
 else:
 argTwo = self.argTwo
 
 out = func(self.argOne, argTwo)
 self.assertEqual(out.shape, self.tgtShape)
 
 out = func(self.argOne[0], argTwo)
 self.assertEqual(out.shape, self.tgtShape)
 
 out = func(self.argOne, argTwo[0])
 self.assertEqual(out.shape, self.tgtShape)
 
 # TODO: Uncomment once randint can broadcast arguments
 #    def test_randint(self):
 #        itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16,
 #                 np.int32, np.uint32, np.int64, np.uint64]
 #        func = np.random.randint
 #        high = np.array([1])
 #        low = np.array([0])
 #
 #        for dt in itype:
 #            out = func(low, high, dtype=dt)
 #            self.assert_equal(out.shape, self.tgtShape)
 #
 #            out = func(low[0], high, dtype=dt)
 #            self.assert_equal(out.shape, self.tgtShape)
 #
 #            out = func(low, high[0], dtype=dt)
 #            self.assert_equal(out.shape, self.tgtShape)
 
 def test_three_arg_funcs(self):
 funcs = [np.random.noncentral_f, np.random.triangular,
 np.random.hypergeometric]
 
 for func in funcs:
 out = func(self.argOne, self.argTwo, self.argThree)
 self.assertEqual(out.shape, self.tgtShape)
 
 out = func(self.argOne[0], self.argTwo, self.argThree)
 self.assertEqual(out.shape, self.tgtShape)
 
 out = func(self.argOne, self.argTwo[0], self.argThree)
 self.assertEqual(out.shape, self.tgtShape)
 
 if __name__ == "__main__":
 run_module_suite()
 
 |