| Viewing file:  pycore_pymath.h (9.21 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
#ifndef Py_INTERNAL_PYMATH_H#define Py_INTERNAL_PYMATH_H
 #ifdef __cplusplus
 extern "C" {
 #endif
 
 #ifndef Py_BUILD_CORE
 #  error "this header requires Py_BUILD_CORE define"
 #endif
 
 
 /* _Py_ADJUST_ERANGE1(x)
 * _Py_ADJUST_ERANGE2(x, y)
 * Set errno to 0 before calling a libm function, and invoke one of these
 * macros after, passing the function result(s) (_Py_ADJUST_ERANGE2 is useful
 * for functions returning complex results).  This makes two kinds of
 * adjustments to errno:  (A) If it looks like the platform libm set
 * errno=ERANGE due to underflow, clear errno. (B) If it looks like the
 * platform libm overflowed but didn't set errno, force errno to ERANGE.  In
 * effect, we're trying to force a useful implementation of C89 errno
 * behavior.
 * Caution:
 *    This isn't reliable.  C99 no longer requires libm to set errno under
 *        any exceptional condition, but does require +- HUGE_VAL return
 *        values on overflow.  A 754 box *probably* maps HUGE_VAL to a
 *        double infinity, and we're cool if that's so, unless the input
 *        was an infinity and an infinity is the expected result.  A C89
 *        system sets errno to ERANGE, so we check for that too.  We're
 *        out of luck if a C99 754 box doesn't map HUGE_VAL to +Inf, or
 *        if the returned result is a NaN, or if a C89 box returns HUGE_VAL
 *        in non-overflow cases.
 */
 static inline void _Py_ADJUST_ERANGE1(double x)
 {
 if (errno == 0) {
 if (x == Py_HUGE_VAL || x == -Py_HUGE_VAL) {
 errno = ERANGE;
 }
 }
 else if (errno == ERANGE && x == 0.0) {
 errno = 0;
 }
 }
 
 static inline void _Py_ADJUST_ERANGE2(double x, double y)
 {
 if (x == Py_HUGE_VAL || x == -Py_HUGE_VAL ||
 y == Py_HUGE_VAL || y == -Py_HUGE_VAL)
 {
 if (errno == 0) {
 errno = ERANGE;
 }
 }
 else if (errno == ERANGE) {
 errno = 0;
 }
 }
 
 // Return whether integral type *type* is signed or not.
 #define _Py_IntegralTypeSigned(type) \
 ((type)(-1) < 0)
 
 // Return the maximum value of integral type *type*.
 #define _Py_IntegralTypeMax(type) \
 ((_Py_IntegralTypeSigned(type)) ? (((((type)1 << (sizeof(type)*CHAR_BIT - 2)) - 1) << 1) + 1) : ~(type)0)
 
 // Return the minimum value of integral type *type*.
 #define _Py_IntegralTypeMin(type) \
 ((_Py_IntegralTypeSigned(type)) ? -_Py_IntegralTypeMax(type) - 1 : 0)
 
 // Check whether *v* is in the range of integral type *type*. This is most
 // useful if *v* is floating-point, since demoting a floating-point *v* to an
 // integral type that cannot represent *v*'s integral part is undefined
 // behavior.
 #define _Py_InIntegralTypeRange(type, v) \
 (_Py_IntegralTypeMin(type) <= v && v <= _Py_IntegralTypeMax(type))
 
 
 //--- HAVE_PY_SET_53BIT_PRECISION macro ------------------------------------
 //
 // The functions _Py_dg_strtod() and _Py_dg_dtoa() in Python/dtoa.c (which are
 // required to support the short float repr introduced in Python 3.1) require
 // that the floating-point unit that's being used for arithmetic operations on
 // C doubles is set to use 53-bit precision.  It also requires that the FPU
 // rounding mode is round-half-to-even, but that's less often an issue.
 //
 // If your FPU isn't already set to 53-bit precision/round-half-to-even, and
 // you want to make use of _Py_dg_strtod() and _Py_dg_dtoa(), then you should:
 //
 //     #define HAVE_PY_SET_53BIT_PRECISION 1
 //
 // and also give appropriate definitions for the following three macros:
 //
 // * _Py_SET_53BIT_PRECISION_HEADER: any variable declarations needed to
 //   use the two macros below.
 // * _Py_SET_53BIT_PRECISION_START: store original FPU settings, and
 //   set FPU to 53-bit precision/round-half-to-even
 // * _Py_SET_53BIT_PRECISION_END: restore original FPU settings
 //
 // The macros are designed to be used within a single C function: see
 // Python/pystrtod.c for an example of their use.
 
 
 // Get and set x87 control word for gcc/x86
 #ifdef HAVE_GCC_ASM_FOR_X87
 #define HAVE_PY_SET_53BIT_PRECISION 1
 
 // Functions defined in Python/pymath.c
 extern unsigned short _Py_get_387controlword(void);
 extern void _Py_set_387controlword(unsigned short);
 
 #define _Py_SET_53BIT_PRECISION_HEADER                                  \
 unsigned short old_387controlword, new_387controlword
 #define _Py_SET_53BIT_PRECISION_START                                   \
 do {                                                                \
 old_387controlword = _Py_get_387controlword();                  \
 new_387controlword = (old_387controlword & ~0x0f00) | 0x0200;   \
 if (new_387controlword != old_387controlword) {                 \
 _Py_set_387controlword(new_387controlword);                 \
 }                                                               \
 } while (0)
 #define _Py_SET_53BIT_PRECISION_END                                     \
 do {                                                                \
 if (new_387controlword != old_387controlword) {                 \
 _Py_set_387controlword(old_387controlword);                 \
 }                                                               \
 } while (0)
 #endif
 
 // Get and set x87 control word for VisualStudio/x86.
 // x87 is not supported in 64-bit or ARM.
 #if defined(_MSC_VER) && !defined(_WIN64) && !defined(_M_ARM)
 #define HAVE_PY_SET_53BIT_PRECISION 1
 
 #include <float.h>                // __control87_2()
 
 #define _Py_SET_53BIT_PRECISION_HEADER \
 unsigned int old_387controlword, new_387controlword, out_387controlword
 // We use the __control87_2 function to set only the x87 control word.
 // The SSE control word is unaffected.
 #define _Py_SET_53BIT_PRECISION_START                                   \
 do {                                                                \
 __control87_2(0, 0, &old_387controlword, NULL);                 \
 new_387controlword =                                            \
 (old_387controlword & ~(_MCW_PC | _MCW_RC)) | (_PC_53 | _RC_NEAR); \
 if (new_387controlword != old_387controlword) {                 \
 __control87_2(new_387controlword, _MCW_PC | _MCW_RC,        \
 &out_387controlword, NULL);                   \
 }                                                               \
 } while (0)
 #define _Py_SET_53BIT_PRECISION_END                                     \
 do {                                                                \
 if (new_387controlword != old_387controlword) {                 \
 __control87_2(old_387controlword, _MCW_PC | _MCW_RC,        \
 &out_387controlword, NULL);                   \
 }                                                               \
 } while (0)
 #endif
 
 
 // MC68881
 #ifdef HAVE_GCC_ASM_FOR_MC68881
 #define HAVE_PY_SET_53BIT_PRECISION 1
 #define _Py_SET_53BIT_PRECISION_HEADER \
 unsigned int old_fpcr, new_fpcr
 #define _Py_SET_53BIT_PRECISION_START                                   \
 do {                                                                \
 __asm__ ("fmove.l %%fpcr,%0" : "=g" (old_fpcr));                \
 /* Set double precision / round to nearest.  */                 \
 new_fpcr = (old_fpcr & ~0xf0) | 0x80;                           \
 if (new_fpcr != old_fpcr) {                                     \
 __asm__ volatile ("fmove.l %0,%%fpcr" : : "g" (new_fpcr));\
 }                                                               \
 } while (0)
 #define _Py_SET_53BIT_PRECISION_END                                     \
 do {                                                                \
 if (new_fpcr != old_fpcr) {                                     \
 __asm__ volatile ("fmove.l %0,%%fpcr" : : "g" (old_fpcr));  \
 }                                                               \
 } while (0)
 #endif
 
 // Default definitions are empty
 #ifndef _Py_SET_53BIT_PRECISION_HEADER
 #  define _Py_SET_53BIT_PRECISION_HEADER
 #  define _Py_SET_53BIT_PRECISION_START
 #  define _Py_SET_53BIT_PRECISION_END
 #endif
 
 
 //--- _PY_SHORT_FLOAT_REPR macro -------------------------------------------
 
 // If we can't guarantee 53-bit precision, don't use the code
 // in Python/dtoa.c, but fall back to standard code.  This
 // means that repr of a float will be long (17 significant digits).
 //
 // Realistically, there are two things that could go wrong:
 //
 // (1) doubles aren't IEEE 754 doubles, or
 // (2) we're on x86 with the rounding precision set to 64-bits
 //     (extended precision), and we don't know how to change
 //     the rounding precision.
 #if !defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) && \
 !defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) && \
 !defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
 #  define _PY_SHORT_FLOAT_REPR 0
 #endif
 
 // Double rounding is symptomatic of use of extended precision on x86.
 // If we're seeing double rounding, and we don't have any mechanism available
 // for changing the FPU rounding precision, then don't use Python/dtoa.c.
 #if defined(X87_DOUBLE_ROUNDING) && !defined(HAVE_PY_SET_53BIT_PRECISION)
 #  define _PY_SHORT_FLOAT_REPR 0
 #endif
 
 #ifndef _PY_SHORT_FLOAT_REPR
 #  define _PY_SHORT_FLOAT_REPR 1
 #endif
 
 
 #ifdef __cplusplus
 }
 #endif
 #endif /* !Py_INTERNAL_PYMATH_H */
 
 |